
Going beyond the Limits of SFI: Flexible and Secure
Hardware-Assisted In-Process Isolation with HFI

Shravan Narayan
UC San Diego, USA
UT Austin, USA

Tal Garfinkel
UC San Diego, USA

Mohammadkazem Taram
Purdue University, USA

Joey Rudek
UC San Diego, USA

Daniel Moghimi
UC San Diego, USA

Evan Johnson
UC San Diego, USA

Chris Fallin
Fastly, USA

Anjo Vahldiek-Oberwagner
Intel Labs, Germany

Michael LeMay
Intel Labs, USA

Ravi Sahita
Rivos, USA

Dean Tullsen
UC San Diego, USA

Deian Stefan
UC San Diego, USA

ABSTRACT
We introduce Hardware-assisted Fault Isolation (HFI), a simple
extension to existing processors to support secure, flexible, and
efficient in-process isolation. HFI addresses the limitations of ex-
isting software-based isolation (SFI) systems including: runtime
overheads, limited scalability, vulnerability to Spectre attacks, and
limited compatibility with existing code. HFI can seamlessly in-
tegrate with current SFI systems (e.g., WebAssembly), or directly
sandbox unmodified native binaries. To ease adoption, HFI relies
only on incremental changes to the data and control path of existing
high-performance processors. We evaluate HFI for x86-64 using
the gem5 simulator and compiler-based emulation on a mix of real
and synthetic workloads.

CCS CONCEPTS
• Security and privacy→Hardware security implementation;
Operating systems security; Browser security.

KEYWORDS
SFI, Wasm, sandboxing, hardware-based isolation

ACM Reference Format:
Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey Rudek,
Daniel Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-Oberwagner,
Michael LeMay, Ravi Sahita, Dean Tullsen, and Deian Stefan. 2023. Going
beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process
Isolation with HFI. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3582016.3582023

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582023

1 INTRODUCTION
WebAssembly (Wasm) [28] has made in-process isolation ubiqui-
tous. In the browser, it powers applications used by billions of
people daily [49, 64, 79]. Beyond the browser, it enables isolation in
places that existing hardware-based protection can’t — from hyper-
consolidated FaaS platforms [32, 76] and high-performance data
planes [59], to data streaming platforms [61].

Wasm makes these novel use cases possible by enforcing iso-
lation in software—using software-based isolation (SFI) —which
avoids the high overheads imposed by existing hardware-based
isolation primitives [54, 71] (e.g., processes, containers, and VMs).
This approach to isolation enables several unique properties.

To start, Wasm context switches are very fast— in the low 10s
of cycles [38], roughly the same as a function call — and orders of
magnitude cheaper than a hardware context switch [30], let alone
IPC. These fast context-switches let Wasm provide extensibility in
high-performance data planes [59], data streaming platforms [61],
and SaaS applications [56]; they also enable fine-grain isolation of
vulnerable libraries in latency sensitive browser renderers [10, 52].

Wasm context creation is also very fast— production FaaS sys-
tems can spin up a new Wasm instance in 30 `s [20], instead of
the tens to hundreds of milliseconds it takes to spin up a container
or VM [20, 48, 69]. Along with low context-switch overheads, this
has enabled a new class of high-concurrency, low-latency edge
computing platforms from Fastly [32], Cloudflare [76], Akamai [2],
etc. that would not have been possible with containers or VMs.

Unfortunately, the power of software-based isolation also comes
with limitations: Performance—even the fastest Wasm implementa-
tions can easily impose a 40% overhead on code execution [36, 88]
limiting Wasm’s ability to support more demanding workloads;
Scaling—Wasm relies on an ad-hoc system of guard regions for
memory isolation (§2) which consumes huge amounts of virtual
memory and limits efficiency in high-scale settings like FaaS plat-
forms; Backwards compatibility—Wasm cannot run unmodified
binaries (e.g., system libraries), code that directly accesses hard-
ware (e.g., SIMD intrinsics, assembly language), or dynamically
generated code (e.g., from just-in-time compilers); Spectre safety—
processors can speculate past security checks in Wasm making

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

266

https://doi.org/10.1145/3582016.3582023
https://doi.org/10.1145/3582016.3582023
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582023&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

it vulnerable to Spectre attacks1. These limitations are the result
of trying to bridge, in software, the gap between past models of
hardware protection and the current needs of software systems.

To overcome them, we developed hardware-assisted fault iso-
lation (HFI)— a simple ISA extension that brings support for in-
process isolation to modern processors.

HFI takes a two track approach to support in-process isolation
(aka sandboxing). First, it provides hardware assistance to eliminate
the limitations Wasm inherits from SFI— essentially replacing SFI
with efficient hardware primitives. Second, HFI provides in-process
isolation that is backwards compatible, allowing it to sandbox un-
modified native binaries and dynamically generated code.

HFI offers primitives that systematically eliminate typical hard-
ware (and software) overheads by design: it imposes near-zero
overhead on sandbox setup, tear-down, and resizing; it can sup-
port an arbitrary number of concurrent sandboxes; it offers context
switch overheads on the same order as a function call; it can share
memory between sandboxes at near-zero cost; it provides flexible
low-cost mitigations for Spectre, and near-zero cost system call
interposition (for native binaries).

We made a few key choices that enable this. First, HFI does
everything in userspace; thus, there are no overheads from ring
transitions or system calls when changing memory restrictions,
or entering and leaving a sandbox. Second, HFI does not rely on
the MMU for in-process isolation— instead, sandboxing is enforced
via a new, orthogonal mechanism called regions (§3.2); regions
enable coarse-grain isolation (e.g., heaps) and fine-grain sharing
(e.g., objects) in the processes’ address space. Third, HFI only keeps
on-chip state for the currently executing sandbox; thus, it can scale
to an arbitrary number of concurrent sandboxes— in contrast, many
other systems hit a hard limit as they keep on-chip state for all
active sandboxes [9, 25, 27, 60, 66, 75].

Beyond this, there are many seemingly small overheads in com-
mon operations whose cumulative impact can be large; we sought
to minimize these costs. Our design eliminates unnecessary context
switches for Wasm sandboxes (§3.1), and lets software choose the
most efficient mechanism for implementing context switches (§3.3).
Spectre mitigations can add overhead by serializing instructions,
so we devised a flexible mechanism to minimize the need to seri-
alize (§3.4). Finally, system call interposition can be complex and
expensive when dealing with many concurrent sandboxes; thus,
we developed a simple low-cost mechanism to enable this (§6.4.1).

HFI reduces the barriers to in-process isolation, allowing it to
be deployed more pervasively and at scale. It achieves this with
minimal additional hardware, and minor changes to the control
and data paths of existing processors.

To evaluate our design, we implemented HFI twice for x86-64
(§5.2). First, we developed a gem5 simulation to enable detailed
performance analysis. Next, we built a compiler based emulator
that approximates HFI overheads in target workloads; this allows us
to run larger and more complex workloads than would be possible
in gem5. To ensure accuracy, we validated the precision of our
emulator using our gem5 simulation.

1Attempts to mitigate Spectre today requires prohibitively expensive compiler tech-
niques [53], or complex workarounds that move the Wasm VM into a process [67]—
and, unsurprisingly, neither approach is used in mainstream Wasm engines.

We integrated HFI emulation into the Wasm2c ahead-of-time
compiler and the Wasmtime just-in-time compiler (§5.1), and eval-
uated its performance on the SPEC CPU 2006 benchmarks (§6.1),
sandboxed font and image rendering in Firefox (§6.2), and a sim-
plified FaaS setting (§6.3). We also applied it to sandboxing native
code (OpenSSL) in the NGINX webserver (§6.4.2)2.

Our results show that HFI-assisted Wasm achieves strictly better
performance than stock Wasm, and offers noticeable speedups on
real workloads, such as a 14%–37% improvement for image render-
ing in Firefox (§6.2). Our native workloads run at bare-metal speed—
modulo the optional (§3.4) added cost of serializing sandbox entries
and exits for Spectre protection.

In our FaaS workloads, adding Spectre protection with HFI leads
to a 0%–2% increase in tail latency as compared to unsafe native ex-
ecution. In contrast — adding Spectre protection using Swivel [53],
the fastest known software-based mitigation, leads to a 9%–42%
increase in tail latency (Table 1).

Most of Wasm’s limitations stem from its reliance on software
techniques for memory isolation; we explore these in the next
section. We then present HFI, and how it lets us go beyond these
limitations (§3).We explore howHFI accomplishes this securely, and
withminimal hardware at a microarchitectural level (§4). Finally, we
evaluate HFI (§6), survey related work (§7), and offer conclusions.

2 LIMITATIONS OF SFI
The limitations of modern page-based protection architectures for
fine-grain isolation are well known [54]. They include expensive
context switches due to protection ring transitions, heavy weight
saves and restores [30], increased TLB flushes and contention as
concurrency scales etc.

SFI [78]— and by extension, Wasm—avoids these costs by in-
stead relying on compiler-added instrumentation to enforce isola-
tion. However, simply adding conditional bounds checks to each
memory load/store and instruction fetch can easily slow down code
by a factor of 2× [78, 88]. Past SFI compilers instead relied on the
(somewhat faster) technique of applying a bit mask to the addresses
used by loads/stores/etc., prior to their use, thus forcing data access
and control flow into the appropriate portion of address space. How-
ever, as a side-effect, this converts out-of-bounds memory accesses
into (seemingly random) memory corruption.

Consequently, Wasm and other modern SFI systems [68, 86] rely
on a faster and safer technique—using the MMU to enforce memory
bounds implicitly— as a poor man’s version of segmentation.

To accomplish this, a Wasm runtime sets aside an 8GiBmemory
region per sandbox, 4GiB for the sandbox address space, followed
by a 4GiB guard region (unmapped address space). It reserves this
space by mmap()’ing the entire 8GiB without permissions.

Additionally, the Wasm compiler restricts the format of memory
operations to load(address, offset) where address is a register with
a 32-bit value, and offset is a 32-bit immediate (constant). On a
memory access, the Wasm compiler adds the address and offset,
resulting in a maximum value of 233 − 2. It then adds this result
to the base-address of the address space (the “heap base”), and
performs the load. Since 8GiB (233) has been reserved after the

2All artifacts of our evaluation are available at https://github.com/PLSysSec/hfi-root

267

https://github.com/PLSysSec/hfi-root

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

heap base, the load either lands in the sandbox address space and
continues, or in the guard region and traps.

Finally, a Wasm program can only access the portion of address
space it has explicitly requested from the runtime (e.g. using mem-
ory_grow()— similar to sbrk()). To enforce this constraint, the
runtime grants access to the accessible portions of memory by set-
ting page permission using mprotect(). Thus, any memory access
beyond the end of the heap will trap.

To isolate control flow, Wasm does not rely on any of the above
tricks, and instead relies on software control flow integrity [28].

Despite this clever design, Wasm still has many limitations, some
fundamental to SFI, and others specific to Wasm’s design:
32-bit address spaces.The approach above only supports 32-bit ad-
dress spaces on 64-bit architectures— to support larger Wasm sand-
boxes [3], or smaller processors, requires old-school SFI masking
or conditionals [78]; masking is out (Wasm requires precise trap se-
mantics), and again conditionals are easily a 2× slowdown [71, 88].
Performance overheads.Wasm can easily impose performance
overheads of 40%— sometimes less, and sometimes a lot more [23,
36]. Some costs are fundamental to SFI, such as restrictions on the
formats of memory instructions and added register pressure [71].
Some are specific to Wasm, such as the cost of software CFI, and
limited access to SIMD instructions.

Another source of overhead that shows up at scale is the cost of
creating and destroying sandboxes. In particular, unmapping mem-
ory incurs a TLB shootdown. In FaaS platforms, where sandboxes
are constantly being created and destroyed on every incoming
network request, this can significantly harm performance.
Spectre.Wasm cannot protect itself against Spectre attacks without
performance penalties— to wit— software-based mitigations add
an additional 62% to 100% of overhead [53] (mitigations relying on
CPU re-design to eliminate Spectre fare better [45, 82, 85, 87], but
entail overheads and implementation complexity that makes them
unlikely to see deployment).
Virtual memory consumption.Wasm’s guard pages have a large
virtual memory footprint that results in several challenges.

8GiB is a lower bound —previously we noted that every Wasm
instance consumes 8GiB of virtual address space— even if it uses
just a few megabytes. However, this is actually a lower bound. Pop-
ular Wasm runtimes support multiple memories per-instance [4]
(e.g., for sharing data between instances) — and these can increase
an instances resource footprint by another 8GiB per-memory. The
next generation of Wasm standards [26] promises to further in-
crease this footprint by supporting Wasm applications composed of
multiple components, where each library in the application would
be a separate component, each with its own memory(s).

Virtual address space is finite— typical Intel x86-64 CPUs pro-
vide 247 (128 TiB) worth of user level virtual address space3—which
seems like a lot. However, that can be used up surprisingly quickly.
For example, if we assume the best case— that each Wasm instance
only consumes 8GiB— then we can run at most 16K (214) Wasm
instances concurrently. In FaaS platforms, that spin up a new sand-
box in 10s of `-seconds [20] for every incoming network request,
16K instances is not a large number. Worse, FaaS functions may not

3Intel supports 52/57-bit address spaces in certain high-end server CPUs.

finish immediately— for example, they might make HTTP requests
(and block). Thus, an address space can fill up quite quickly.

Operations systems are slow—FaaS systems could of course han-
dle scaling limits by spinning up multiple processes and load balanc-
ing requests between them— relying on the OS to context switch
threads between processes, and context switch processes once these
exceed the number of physical cores, and so on. However, the main
reason FaaS providers use Wasm is to avoid these overheads in the
first place. FaaS providers would rather schedule more instances
in fewer processes— ideally one. If used efficiently, 128 TiB really
does support a lot of Wasm instances; not only is this more efficient,
it makes systems easier to understand, which in turn makes them
easier to deploy, debug, and optimize.

Finally, applications that use FaaS platforms don’t always consist
of just one function, they can be multiple functions that want to
communicate (function chaining). In a single address space, this
communication is as fast as a function call, however, this is easily
1000× to 10000× slower across process boundaries (IPC) [30, 38].

In the next section, we explore HFI, our hardware extension that
addresses these limitations.

3 THE HFI DESIGN AND INTERFACE
Hardware-assisted fault isolation (HFI) is our extension for modern
processors that supports flexible in process isolation, and offers the
following properties:

(1) Security. HFI provides all the capabilities needed for secure
sandboxing of Wasm and native binaries, including data and con-
trol flow isolation (§3.2), complete mediation of the OS interface
including system calls (§3.3), and Spectre mitigation (§3.4).

(2) Efficiency. HFI imposes minimal overhead for critical opera-
tions. Memory isolation with HFI imposes no overhead— all mem-
ory bounds and permission checks execute in parallel with TLB
lookups (§4.2); Context switches are software managed; thus Wasm
can exploit zero-cost techniques [38] to optimize them (§3.3.1); Sys-
tem call interposition is near zero cost —HFI converts system calls
into jumps (§4.4); HFI’s overhead for creating and destroying sand-
boxes, and sharing and resizing sandbox memory is near zero—
only requiring a few HFI instructions to update region registers
(§4.4)4. Spectre protections are flexible and configurable, allowing
developers to avoid unnecessary serialization (§3.4).

(3) Scalability. HFI imposes no limit on the number of concurrent
sandboxes a program can run— it achieves this by keeping the
amount of on-chip state constant, regardless of the total number of
sandboxes (§4).

(4) Compatibility.HFI supports the unique requirements ofWasm
and native binaries. For Wasm, HFI offers precise memory fault
semantics (i.e., out-of-bound memory access traps), granular heap
growth (64K increments), code and data separation, and direct ac-
cess to system calls for Wasm sandbox runtimes (via. sandbox types
(§3.3)). For unmodified native binaries, HFI eschews any changes to
compilers, standard libraries, or binary formats (i.e., ABI changes),
and supports simple and efficient system call interposition.

4To be clear, HFI only does isolation, not resource management— thus, additional
sandbox creation overheads, like memory allocation, are up to the developer.

268

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

(5) Adoptability. For easy adoption, HFI minimizes changes to
existing operating systems and processors. OS kernels only need to
add a small amount of per-process storage to save HFI’s registers
during a process’s context-switch. To support the OS, HFI extends
the processor instructions that save and restore a process’s registers
(xsave and xrstor on x86) to include HFI’s registers (§3.3.3). Exist-
ing processors require only a small amount of additional hardware,
and minimal changes to data and control paths to support HFI (§4).

We start with a high-level overview of HFI in §3.1. We then take
a deep dive into regions—HFI’s mechanism for controlling access
to memory in §3.2. In §3.3, we explore HFI’s other features in the
context of implementing a sandboxing system and see how HFI
mitigates Spectre in §3.4. For reference, the complete HFI interface
is listed in the appendix.

3.1 HFI Overview
HFI allows developers to build sandboxing runtimes that can ef-
ficiently create multiple in-process sandboxes each with its own
view of process memory.

HFI’s interface is accessible entirely in user space— there is no
kernel component or ring transitions. Thus, a runtime can rapidly
instantiate sandboxes, share memory, etc. HFI can support a wide
range of uses cases, from sandboxing untrusted libraries in a large
applications [52], to supportingWasm sandboxes in a FaaS platform.

We refer to a runtime managing sandboxes alternately as the
runtime or trusted runtime, since in our HFI threat model, we
assume this code is trusted, and the sandboxed code is untrusted—
although things get slightly more nuanced with hybrid sandboxes
(see below). HFI builds on a few central concepts:
HFImode. Each CPU core has its own HFI state, stored in registers.
If HFI is enabled, code running on that core is “sandboxed”, i.e,
execution is restricted according to: (a) a set of region registers
(that grant access to memory), (b) a register with the sandbox exit
handler (where system calls and sandbox exits are redirected to),
and (c) a register with sandbox option flags (e.g., the sandbox type).
With a few exceptions, HFI is enabled when the trusted runtime
executes an hfi_enter instruction, and disabled when sandboxed
code executes an hfi_exit instruction—which transfers control
back to the trusted runtime. The runtime is responsible for saving
and restoring context appropriately, and can use HFI to multiplex
many sandboxes across cores, scheduling them as it sees fit.
Interposition. HFI supports interposition on all paths out of the
sandbox including system calls (and by extension, signals), and
sandbox exits (hfi_exit). Thus, the runtime can completely me-
diate [63] the interaction of sandboxed code with the operating
system and enclosing process. Supporting interposition directly
in HFI, rather than relying on existing OS mechanisms [65, 75]
offers excellent flexibility, reduces complexity (which benefits secu-
rity [14]), improves performance, and eases deployment.
Sandbox types.HFI supports two sandbox types: native to support
standard in-process isolation, and hybrid to support Wasm and
other SFI systems. The key difference between these two is their
trust model. In native sandboxes, HFI assumes sandboxed code is
untrusted; in hybrid sandboxes, HFI assumes sandboxed code is
trusted— or more specifically, that it was built with a trusted com-
piler (or checked with a trusted verifier [37, 50, 86]). Because HFI

knows hybrid sandboxes are trusted, it allows privileged operations
such as system calls and sensitive register updates. This allows
hybrid sandboxes to avoid sandbox exits (with the resulting cost of
context switches) entirely, modulo whatever the runtime is doing
to multiplex HFI. We explore this further in §3.3.
Regions. In HFI mode, all memory access is controlled using re-
gions. Conceptually, these can be thought of as an address range
described by a base (start address for the range), a bound (the size
of the range), and a set of permissions (read, write, and execute).
In general, every sandbox will have a set of data regions (e.g., for
its heap, stack, and shared data) and code regions. Regions are an
attractive representation as they require minimal state (it is easy
to save/restore for fast context switches) and can be enforced with
simple hardware. As regions are a central feature of HFI, we will
explore them first.

3.2 Isolating Data & Control Flow with Regions
By default, a sandbox has no access to memory— it cannot read
data or run code. A runtime grants access to memory using regions,
by configuring the region registers prior to sandbox entry. HFI of-
fers two types of regions, implicit and explicit, each specialized to
different tasks:
Implicit regions. Implicit regions apply checks to every memory
access, and grant access on a first-match basis. For example, if sand-
boxed code executes an instruction— load address X into register
Y —HFI will check if any region register has a range that includes
X in parallel, then apply the permissions from the first matching
region. If the first match has read permission, the operation will
proceed, and if it does not, HFI will trap.

Implicit regions are essential for isolating unmodified native
code, and similarly, for isolating control flow, situations where
explicit regions (described next) would be impossible to use.

Implicit regions perform efficient bounds checks based on prefix
matching (§4). Concretely, each region specifies a base_prefix (the
region’s base address) and an lsb_mask. To check if an address is in
bounds, HFI uses the lsb_mask to remove the least significant bits
of the address, and compares the remaining prefix to base_prefix.
With this approach, implicit regions must be power of two sized
and aligned— thus, they trade granularity for efficient checking.

HFI discriminates implicit regions into code and data regions,
to keep the control and data pipelines simpler and more efficient.
Thus, data region checks apply only to reads and writes, while code
regions check apply only to instruction fetches.

HFI provides six implicit regions per-sandbox, four data regions
(e.g., for the heap), and two code regions (e.g., for the application
and shared library code)5. Implicit regions checks are not applied
to operations on explicit regions, which we discuss next.
Explicit regions. An explicit region acts as a handle to a memory
range, and follows the normal (base, bound) style of addressing.
Thus, addressing is always relative to the base of a specified region.
For example, if a sandbox executes an instruction: read address X in
region1 into register Y. If 𝑋 < 𝑟𝑒𝑔𝑖𝑜𝑛1[𝑏𝑜𝑢𝑛𝑑] is true, and reads are
permitted. HFI will store the contents of 𝑟𝑒𝑔𝑖𝑜𝑛1[𝑏𝑎𝑠𝑒_𝑎𝑑𝑑𝑟𝑒𝑠𝑠] +𝑋
into Y, otherwise it will trap.

5The region count was based on experience sandboxing code in production settings.

269

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

HFI provides four explicit regions, and two different region
sizes (large/small), with different granularities. Large regions can
address up to 256 TiB (248) and are sized and aligned to multiples of
64K (216). Small regions, in contrast, can only address up to 4GiB
(232), but are byte granular in size and alignment. Small regions
have one additional restriction: they cannot span addresses which
are multiples of 4GiB.

We note that, while allowing regions which support arbitrary
address ranges at any grain is conceptually simpler than specialized
large and small regions, our restrictions allow bounds checkingwith
very simple hardware. HFI’s large and small regions constraints can
be checked with a single 32-bit comparator, rather than the multiple
64-bit comparators needed to check arbitrary region bounds (§4.2).

Explicit regions’ added granularity is critical for supporting
Wasm heaps6, which grow in 64K increments [28]—while byte
granularity is critical for efficiently sharing individual memory ob-
jects and sandboxing legacy code, as existing buffers can be shared
in-place changing code or allocators.

Explicit regions are accessed using the hmov instruction. There
are four hmov instructions hmov{0–3}, one to access each of the
explicit regions. For example, hmov0 is used to access the region
specified by the first region register. To ease adoption in existing
compilers, hmov offers the same semantics as the normal x86 mov
instruction—with the following caveat.

Unlike the normal mov, hmov ensures that only positive offsets of
explicit regions are accessed— a guarantee necessary for a simple
implementation in the hardware (§4). To elaborate, the normal
x86 mov takes multiple operands which are added to generate the
effective address for a memory operation. The hmov instruction
modifies this in the following ways: (1) the first operand is always
ignored and replaced with the specified region’s base address, (2)
hmov traps if a negative value is used for the remaining operands,
and (3) hmov traps if the effective address computation overflows.

While some aspects of these restrictions may seem onerous at
first glance, they only rule out patterns that compilers do not rely
on in-practice, or can easily work around; for instance, overflows
in effective address computations are undefined behavior in C/C++.

3.3 Sandboxing with HFI
Next, we explore how HFI’s features are used to instantiate and
run sandboxes. As a motivating example, we will assume we are a
function-as-a-service (FaaS) provider building a trusted runtime to
sandbox client applications. In our example, our FaaS can support
both Wasm applications and native applications.

3.3.1 Entering a Sandbox. Let’s assume we’ve gotten a network
request, and our runtime is ready to start a sandbox— application
code is in memory, heap space is allocated, inputs (e.g., the headers
and body of an HTTP request to our FaaS service) are in a buffer in
memory. Our runtime can now take the following steps:
Setting up regions. To start, our runtime sets up access to the
code, heap, and input memory so our application has everything
it needs once the sandbox starts. The runtime does this by using

6Regions make resizing heaps orders of magnitude faster than currentWasm implemen-
tations, as regions can be resized with just a register update. In contrast, current Wasm
systems use mprotect() to limit access to only what the sandbox has requested— thus
a system call is always required to resize memory.

the hfi_set_region instruction which stores these initial region
mappings into the specified region’s registers. Notably, if no code
regions are mapped, HFI will immediately trap after hfi_enter is
called, as the processor will not be able to fetch instructions.
Selecting a sandbox type.Our runtime selects a sandbox type (hy-
brid/native), which it passes as a flag to hfi_enter. If the runtime
is running untrusted code, it chooses the native sandbox, causing
HFI to lock all region registers from when hfi_enter is called until
the sandbox exits, and redirect all system calls to our runtime’s exit
handler (see below).

If it is running aWasm application, it chooses the hybrid sandbox,
which leaves the region registers unlocked. So, when the Wasm
runtime inside the sandbox starts up, it sets up an explicit region
that points to theWasm heap using hfi_set_region. As theWasm
code runs, the runtime inside the sandbox canmake any system calls
it needs to directly. It can also resize the heap, or multiplex HFI’s
(finite) registers among a larger number of multi-memories [4].
Consequently, scheduling reasons aside, there should be no need
to hand control back to the (external) trusted runtime until the
application exits.
Saving context. Our runtime must protect its own execution
context such as its stack and contents of CPU registers, before
it switches to sandbox code. Unlike previous systems [15], HFI
leaves this mechanism entirely up to software— this flexibility is
important for efficiency. For example, if our runtime is running
untrusted native code— it will have to use springboards and tram-
polines [86]— lightweight assembly routines that (1) clear registers
and switch to a separate stack prior to executing the sandboxed
code and (2) restore these registers after the sandboxed is executed.
However, if it is running Wasm code, it could opt to use zero-cost
transitions [38] that rely on the compiler to ensure that the sandbox
code cannot misuse the stack or scratch registers.
Setting up an exit handler. If our runtime is using a native sand-
box, it will install an exit handler to take control when hfi_exit is
called, or when system calls are made in a native sandbox. To install
an exit handler, our runtime specifies a function pointer that must
be invoked on sandbox exit as parameter to hfi_enter. When the
exit handler is called after the sandbox exits, it will transfer control
to our runtime, which will check a model specific register (MSR)
to identify the cause of the exit, and respond appropriately. If HFI
is running a Wasm (hybrid) sandbox, our runtime typically will
not install an exit handler (though it optionally can), as it is not
interposing on system calls and hfi_exit instructions; this is safe
since the code in the sandbox is trusted.

Having taken all these steps, our runtime is ready to start the
sandbox. Once it calls hfi_enter, HFI mode is enabled, and the
next instruction that runs will be inside a sandbox.

3.3.2 Leaving a Sandbox. After the execution of sandboxed code,
HFI is disabled, and control is returned to our trusted runtime
through a few different paths:
hfi_exit and system calls. If sandboxed code calls hfi_exit,
HFI will record the reason for the exit in an MSR, atomically disable
HFI mode, and transfer control to our trusted runtime. For native
sandboxes, our runtime’s exit handler is invoked on exit; for hybrid
sandboxes, our runtime will not use an exit handler and instead

270

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

allows hfi_exit to fall through to other trusted code placed directly
after the exit (allowing an exit handler code to be inlined when
using a trusted compiler). The native sandbox’s interposition of
system calls is nearly identical to an hfi_exit with a handler;
system calls are simply converted into a jump to the exit handler
by HFI, resulting in very efficient interposition. Again, the cause
of the exit, including which system call and type of call (e.g., int
0x80 vs. sysenter) is recorded in an MSR that can be read by the
exit handler.

Access violations and hardware faults. If sandboxed code causes
a hardware trap (e.g., when dereferencing a null pointer), or an
HFI bounds check violation (accessing memory outside of the HFI
regions) —HFI disables the sandbox mode, records the cause of the
fault in a model specific register (MSR), and generates a hardware
trap—which the OS delivers as an OS signal to our trusted runtime.
For example, upon encountering an HFI bounds check violation,
HFI disables the sandbox and generates a fault that is delivered as
a SIGSEGV signal to a signal handler that our runtime registered.
The signal handler can examine the MSR to disambiguate the cause
of the SIGSEGV, and take the next appropriate action.

3.3.3 OS Support. Multiple processes can use HFI concurrently.
To enable this, the OS must save the contents of HFI registers
(along with the general-purpose registers) when switching between
processes. To support this, HFI adds a flag (save-hfi-regs) to the
x86 xsave and xrstor instructions, that are used to save and restore
process context. Enabling this flag in the kernel is a simple and
minimal change. Since this flag modifies the HFI registers, allowing
code in a native sandbox to execute xrstor with this flag could
break sandboxing; thus HFI will traps if this occurs.

3.4 Mitigating Spectre
By construction, HFI prevents whole classes of attacks that could
be used to speculatively read data outside the sandbox, since HFI’s
region checks are applied uniformly to all memory accesses (spec-
ulative and non-speculative) once HFI is enabled. However, an at-
tacker could still try to trick the trusted runtime into speculatively
running malicious code without HFI enabled— or to speculatively
enable HFI in an inconsistent state; we address these risks next.

Serializing hfi_enter and hfi_exit. A simple way to mitigate
the previously mentioned attacks is to fully serialize hfi_enter
and hfi_exit. Serializing hfi_enter ensures that when we enter
a sandbox, our configuration is in a consistent state— for example,
that some region register does not (speculatively) contain unsafe
parameters due to speculative execution, data value prediction, etc.
Serializing hfi_exit ensures that malicious code cannot specula-
tively disable HFI, and then speculatively execute a code path that
would never happen under non-speculative execution.

To serialize hfi_enter and hfi_exit, a runtime can set the
is-serialized flag on sandbox entry. We expect this to add ≈
30 − 60 cycles on x86-64 based on the cost of similar serializing
instructions [30, 75]; this cost is amortized in many workloads, as
we see in §6. However, for applications that don’t want to pay this
cost, we offer an optional extension to HFI called switch-on-exit,
that avoids most of this overhead, but still offers Spectre protection.

The switch-on-exit extension. Often there is no need to Spectre
isolate a collection of sandboxes— or the same sandbox— across in-
vocations. For example, multiple invocations of a sandbox working
on the same data (e.g., for image rendering as discussed in §6.2) are
a common occurrence. Other times, a developer knows there are no
secrets among sandboxes that need Spectre protection, e.g., among
components [26] in an application or FaaS invocations of the same
tenant. In these cases, serializing every entry and exit is needlessly
expensive. To avoid this overhead—HFI optionally provides the
switch-on-exit extension that enables runtimes to restrict specula-
tive control flow to a common set of sandboxes— and ensure that
any entry and exit from this set is serialized.

To use switch-on-exit, a trusted runtime must start by running
itself in a hybrid sandbox with the is-serialized flag set; thus, both
its entry and exit will be serialized. This ensures that any con-
trol flow into the sandbox cannot speculate beyond its (serialized)
hfi_exit. Once this foundation is set, the trusted runtime can run
other sandboxes by invoking hfi_enter (unserialized) with the
switch-on-exit flag set— doing so will save the trusted runtime’s
HFI registers, and atomically switch to the registers of the new
sandbox. Sandboxes started this way cannot disable HFI when they
exit (e.g., with hfi_exit); instead, HFI will atomically switch back
to the trusted sandbox by restoring its registers to the state prior
to hfi_enter. Thus, we can run multiple sandboxes without seri-
alization. Ultimately, serialization will take place when we leave
the trusted sandbox; thus, an attacker can never speculatively run
code outside this collection of sandboxes with HFI disabled.

Securing the runtime. Sandbox runtimes execute in close prox-
imity to untrusted code. In the case of Wasm, the runtime even
executes within the same sandbox, making it acutely vulnerable
to Spectre attacks. Consequently, runtimes need a way to prevent
themselves from being tricked into leaking privileged data [53].

Implicit regions are the tool that runtimes in hybrid sandboxes
can use to solve this problem. Implicit regions provide a “safety
net” for runtime code, such that even if runtimes are under the
speculative influence of an adversary, they can secure themselves
by constraining their memory accesses to a safe portion of the
address space. Runtimes of native sandboxes can also leverage this
approach by executing within a dedicated hybrid sandbox.

A final important caveat is that using HFI still requires a holistic
approach to Spectre security. Running code in a sandbox does
not change the influence that malicious code exerts on prediction
hardware state, which could influence other software on the system.
As a corollary, a runtime that is sandboxing with HFI must ensure
that it does not allow a speculative bypass of hfi_enter altogether,
followed by speculative execution of untrusted code

4 `ARCHITECTURE DESIGN
HFI’s `-architectural design is guided by four overarching goals:
(1) Fast.Minimizing overhead is a central goal of HFI.

(2) Secure. HFI must be robust to Spectre-style attacks, and free
from Meltdown-style flaws that could compromise existing soft-
ware. To avoid this, HFI must not update microarchitectural state
(such as the dtb, branch predictor, and data/instructions caches)
based on data that is secret (i.e., data outside the sandboxed region).

271

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

HFI Metadata Regs
Base Bound RW L/S

0
1
2
3

0x7fff8000 0x7fff8800 10 S
0x7fff5000 0x7fff5400 10 L
0x7fff0000 0x7fff0100 10 L
0x7fffa000 0x7fffa200 11 L

hmov2 (rdx), r10

dtb
dCache Index Lookup

Address
Generation

Unit

Opcode

src phys reg1(base)

src phys reg2 (idx)

Physical Register File

From
Register
Rename

disp
scale

dst phys_reg

Tag Match/
Miss Handler

HFI Comparator

Perm.
Check

E
ff A

ddress

Base

Index
Scale
Disp

PAddr

HFI RW Bits

HMOV BIT

HFI Region

/2

H
M

O
V

B
IT

HMOV
Bound

RW

To L2

Tag Array

Fault?

Sign
B

it

 Overflow == 0
EA < Bound

Disp, Index ≥ 0

Sign
 B

it

=?
Base_Mask

EA & Ignore_Mask
HMOV

BIT

HFI MASKS Regs (Data Path)
Base Mask Ignore Mask RWL/S
0x7fff8000 0x7fff8800 10 S
0x7fff5000 0x7fff5400 10 L

HMOV

Regular Mem OP

i

i

O
verflow

?

Bounds
Violation?

m
u
x

m
u
x

GS/FS

Figure 1: HFI Impact on the x86 data pipeline. We see the x86 data pipeline with added HFI components in Green. HFI adds no
additional overhead to the data path—no new pipeline stages are added—and all new operations take place in parallel with the
dtb (dTLB) lookup or instruction decode stages.

(3) Scalable. HFI must not constrain the number of concurrent
sandboxes. Thus, we eschew designs that store per-sandbox state
(such as region details) for multiple sandboxes in on-chip caches
such as the TLB. Hardware extensions that do this impose scaling
limits either by restricting the total number of concurrent sand-
boxes [66, 75], or requiring expensive state spills on overflow [55],
resulting in performance that scales down as concurrency increases.

(4) Minimal. HFI should not significantly change the processor
design or add expensive components. This helps generality as min-
imal designs are easier to implement in small power-conservative
chips, and also benefits security by presenting fewer features to
verify and fewer potential attack surfaces.

HFI’s `-architecturemust also conform tomore specific low-level
constraints that are critical for practical adoption:
(1) Low power: Power consumption is a critical metric in small
devices and datacenters— in light of this, HFI eschews the use of
power-hungry components such as large caches (HFI’s on-chip
storage is measured in bytes, not kilobytes).

(2) Zero impact on non-sandbox code:Most code is not sand-
boxed today, and vendors are not likely to embrace a design that
slows down regular (non-sandboxed) code. Thus, we cannot add
extra pipeline stages that are seen by regular instructions, nor can
we add timing delays to any existing stages that are on the critical
timing path of the processor (and would therefore impact the CPU
maximum frequency).

(3) Low impact on circuit area: HFI enforces region bounds
checks in the neighborhood of critical pipeline structures, such
as the register file, address generation unit, and the TLB. Thus,
large structures, even if they are not on the critical timing path,
can exacerbate timing delays between critical structures that are
now further apart. For example, using 64-bit comparators to check
bounds would be a natural design choice, but would challenge our
power and area goals.

Additional components: As discussed, HFI seeks to minimize
the number of new components it requires. Of course, it’s not just

the component count but where they are added that matters; even
a handful of gates on critical paths like memory lookup would
increase the cycle time of the entire CPU. To account for this, we
worked with architects at a major CPU vendor to refine our design
to try to minimize impact on CPU pipelines.

In total, HFI’s architecture adds: 8 instructions, 22 internal 64-bit
registers (10 regions specified by 2 registers each, 1 exit handler
register and 1 configuration register), an additional 22 internal
64-bit registers for the optional switch-on-exit support, one 32-bit
comparator for bounded regions, four 64-bit AND gates for masking,
four 64-bit equality checks for prefix-checked regions, and five 2-bit
muxes (region lookup, negative offset checks, etc.).

4.1 Implicit Regions
Implicit regions enforce memory protection for control (code re-
gions) and data (data regions), including speculative safety.

Data regions. HFI supports four data regions, and allocates two
registers per-region, for the lsb_mask and base_prefix. If HFI
is enabled, data region checks are applied to all load and store
operations on the data path (except those that employ hmov).

Concretely, checks work by prefix matching. To implement this,
the region’s lsb_mask is first used to remove the least significant
bits of the effective address (with an AND operation), and then
the base_prefix is compared for equality with the remaining bits
of the address. To ensure efficiency, these checks occur in parallel
with the dtb and cache index lookup.

If prefix-checking fails for all regions, or the first matched region
does not have adequate permissions (e.g., no read permission for a
load operation), HFI triggers a segmentation fault (using the same
circuit paths that would handle an access to unmapped memory),
and saves the reason for the fault in a MSR.

Since bounds checking, dtb lookup, and cache index lookups
happen in parallel (as shown in Figure 1), it may appear that cache
state could be modified as a result of secret (out-of-bounds) data.
However, HFI is designed to prevent this sort of side-channel attack
by construction: all bounds checks occur before the processor can
resolve the physical address of a memory access. This is secure

272

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

because the processor can update cache metadata like the LRU bits
(for hits) or fetch new data blocks (for misses) only after resolv-
ing the physical address. HFI can therefore strictly prevent any
metadata updates if there has been a fault.

Note that we cannot say the same for the dtb or the i-cache; here
an out-of-bounds address can affect metadata— e.g., LRU bits. How-
ever, the invariant we guarantee— no secret (data stored outside the
boundaries of the region) ever affects architectural state— is still
not violated, since we do not allow the result of an out-of-bounds
memory operation to propagate into any of these structures.
Code regions. Code regions enforce bounds checks on control flow
(both speculative and non-speculative). HFI allocates four internal
registers to store region metadata for the two code regions. HFI
uses prefix-checking to bound the program counter, employing the
same technique used for data regions.

To ensure security, prefix-checking is applied in parallel with
the decode stage. If the check finds a matching region with execute
permissions, it succeeds, and decode carries on normally. If the
check fails, it prevents the decoded micro-ops from entering the
pipeline, and instead translates all instructions into a faulting NOP
micro-op. This ensures that instructions that are out-of-bounds
are not executed during committed execution, and are also not
executed speculatively.

To summarize, HFI’s data pipeline is Spectre safe, since the data
cache is not updated prior to bounds checks being completed; HFI’s
control pipeline is safe as bounds checks finish prior to instruction
decode prior to the execution of instructions. This approach also
helps to guarantee that any code executed as the result of PHT, BTB,
and RSB (speculative) predictions are checked prior to execution.

4.2 Explicit Regions
Explicit regions (§3.2) offer granularity that is necessary to support
Wasm heaps as well as fine-grain object sharing. They are accessed
with hmov instructions, which performs bounds checks to ensure
only memory specified by the region is accessed.

At a high level, the hmov instructions (hmov0, hmov1, hmov2,
hmov3) follow a similar format to the standard x86 move instruc-
tions; it supports all variations and addressing modes of x86, in-
cluding the complex addressing mode where scale, index, base and
displacement operands are combined to form the effective address.

However, hmov has additional steps that: (1) choose anHFI region,
(2) replace the base operand with the base address of the chosen HFI
region, and (3) perform checks on the remaining operands and the
resulting effective address of hmov to ensure that thememory access
remains within the region. Each of these steps can be implemented
with small modifications to the existing x86 data path:
Instruction decode. The decode pipeline stage is responsible for
translating x86 instructions into simpler and easier to execute op-
erations called micro-ops. HFI extends the decode stage with a new
micro-op that differs slightly from the load or store micro-op by
adding a region number and a single bit indicating that this is an
hmov rather than a standard mov.
Register read. As shown in Figure 1, during the register read stage,
hmov substitutes the base register (which would otherwise be read
from the register file) with a base value read from one of the four
sets of range registers.

Bounds checking on hmov. During memory operations, HFI
performs bounds checking in parallel with the processor’s address
translation (dtb lookup). In the case of hmov, the HFI comparator
unit (Figure 1), ensures that the effective address is within bounds.

This could be naively accomplished with two (expensive) 64-
bit comparators. HFI, however, exploits the fact that the base has
been precomputed— and uses this value along with three cheaper
checks that require only a single 32-bit compare. Specifically, HFI
checks that: (1) the 32 most significant bits of the effective address is
smaller than the upper bound specified in the HFI region metadata
registers, (2) the displacement and index sign bits are non-negative,
and (3) effective address calculation does not cause an overflow.
The second and third check ensure it is impossible to generate an
effective address lower than the base. Thus, we check both base and
bound with a single compare (and three trivial bit checks). Next, we
discuss why checking only 32 most significant bits is secure for the
two types of explicit regions HFI supports— large and small (§3.2).
Bounds checking large and small regions. Large regions require
the base and bounds to be aligned to 64K (216). This means that
the bottom 16-bits of the effective address can be safely ignored, as
their contents cannot cause an out-of-bounds access. Additionally,
x86 CPUs typically support a 48-bit virtual address space; HFI can
thus ignore the top 16 bits of our address for comparison. On Intel
server CPUs that support 52/57-bit address spaces, a larger 36/41-bit
comparator would be necessary.

Small regions support arbitrary bounds up to 32-bits (4GiB) in
size, as long as the small region does not cross a 4GiB boundary.
Because of these restrictions any addresses in small regions cannot
affect the top 32-bits of the effective address. HFI thus only checks
the bottom 32-bits of the effective address of small regions.

4.3 Region Updates
Region registers state can be modified by several instructions:
hfi_set_region, hfi_clear_region, and hfi_get_region, either
when HFI is disabled—or while HFI is enabled in a hybrid sand-
box. While the semantics of these operations are quite simple (e.g.,
writing metadata to a region register), there are several nuances to
how they are implemented to ensure performance and safety.

To start, these operations do not serialize when not in HFI mode,
as they are always followed by an hfi_enter (that can be serial-
ized) before the HFI region checks take effect. However, they do
serialize when executed in a hybrid sandbox, to ensure the correct-
ness of in-flight instructions and memory operations. Additionally,
hfi_set_region(code,...) flushes any pending memory opera-
tions, and is serialized to ensure that all in-flight instructions are
retired prior to applying the new bounds. These serialization costs
can be avoided if we employ register renaming on HFI metadata reg-
isters (similar to that used in general-purpose registers), in essence,
trading complexity for improved performance.

4.4 Enters, Exits, Sandbox Types, & System Calls
As discussed in §3.3, HFI provides hfi_enter and hfi_exit in-
structions to enter and leave a sandbox. On sandbox entry, the
hfi_enter instruction saves its parameters— the exit handler and
flags (switch-on-exit, is-serialized, is-hybrid) to internal configu-
ration registers, and HFI mode is enabled. On exit, HFI disables

273

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the sandboxing, records the reason for the exit (e.g., executed an
hfi_exit instruction, executed a syscall, traps) in an MSR, and
finally jumps to an exit handler if one is specified. The semantics
of sandbox entry with respect to serialization are described in §3.4.

Sandbox types. Hybrid and native sandboxes differ in how they
deal with region updates, privileged instructions (system calls), and
the semantics of hfi_exit. However, there is no special component
that implements a sandbox type. Rather, other features modify their
behavior based on the sandbox type as discussed in §3.

System call interposition. Native sandboxes require HFI to redi-
rect syscalls when executing sandboxed code. To do this, HFI modi-
fies the decode stage of the syscall instruction (and all variations
including sysenter, int 0x80, etc.) to first perform a microcode
check if HFI is in native mode (is-hybrid is false), and redirect
control flow to the HFI exit handler if this is the case. The syscall
instruction is otherwise unmodified. While this approach imposes a
single cycle penalty on syscall instructions for the additional check,
this overhead is unlikely to impact application performance due to
the relatively sparse nature of system call invocations compared to
other instructions such as loads and stores.

4.5 Mitigating Spectre
HFI’s enter, exit, and region update instructions can be serialized
when necessary for Spectre protections. However, HFI also offers
another way to mitigate Spectre, that minimizes serialization over-
head for common use cases. As discussed in §3.4, the switch-on-exit
flag allows speculative safety without the need to serialize on every
entry and exit. This is safe because any speculatively run hfi_exits
would atomically switch to the runtime’s sandbox.

To support this, we extend HFI in three ways. First, we double
the number of HFI metadata registers, so that we can store the
metadata for two sandboxes— the runtime sandbox and the child
sandbox. Second, we modify the hfi_enter instruction (when ex-
ecuted with the switch-on-exit) to preserve the trusted runtime’s
sandbox metadata (currently in the HFI registers), before loading
the child sandbox’s metadata. Finally, the hfi_exit instruction,
upon execution with the switch-on-exit flag enabled, atomically
switches back to using the trusted runtime sandbox metadata in-
stead of disabling HFI.

These changes to hfi_enter and hfi_exit can be implemented
in a straightforward manner in microcode. While this feature does
add some additional cost in the form of internal registers, it allows us
to support speculative safety for common use cases, while removing
most of the cost of serialization.

5 EXPERIMENTAL METHODOLOGY
This section documents our experimental framework and approach
(and experimental evaluation thereof) to achieving accurate hard-
ware simulation of long-running benchmarks.

5.1 Integrating HFI into Wasm
We modify two compilers used in production applications to test
the use of HFI with Wasm toolchains: Wasm2c, an ahead-of-time
compiler used to run untrusted libraries in Firefox, and Wasmtime,
a just-in-time compiler used in Fastly’s FaaS environment.

We added HFI support to Wasm2c, and secured the Wasm
heap by using a explicit region, accessed by hmov. We removed
mprotect() calls to setup guard regions, and replaced existing
heap growth code with hfi_set_region. We added hfi_enter
and hfi_exit to sandbox transitions. We omit HFI support for the
Wasm stack, indirect function tables, and the code section as these
would not impact our performance results. However, this would be
necessary for complete Spectre mitigation.

WemodifyWasmtime to use HFI for lifecycle operations (Wasm
sandbox creation and growth) to understand the benefits of HFI.
Thus, we integrated hfi_enter, hfi_set_region, support but did
not add hmov support for the Wasm heap (as this would not affect
lifecycle costs). We use HFI to optimize Wasmtime’s teardown of
multiple sandboxes to more efficiently reclaim memory on sandbox
exits. We discuss this in more detail below.

OptimizingWasmtimewithHFI.Wasmtime today deallocates or
tears down sandboxes using the madvise(MADV_DONTNEED) system
call, which discards an old sandbox memory and replaces it with
a lazy copy-on-write mapping of the next executing sandbox’s
memory image. These madvise() calls can be slow as they incur a
cost proportional to the size of region being discarded, and worse
can even perform a TLB shootdown in concurrent environments.
HFI allows us to optimize these madvise() syscalls by batching
multiple such calls when discarding memories of sandboxes that are
adjacent in memory. This is possible as HFI eliminates the need for
large regions of guard pages between different sandbox memories.
By eliminating these guard pages, we can trivially run madvise()
across immediately adjacent heaps, without paying a significant
penalty when unnecessarily discarding guard pages. Furthermore,
the elimination of guard pages also reduces address-space pressure,
which means we can afford to wait longer prior to discarding old
sandbox memories. We thus modified Wasmtime to take advantage
of batching during sandbox destruction.

5.2 Hardware Simulation
Our approach to accuratelymodelingHFI on complex, long-running
applications is twofold. We model all of the low-level costs of HFI
using detailed cycle-accurate pipeline simulation, but can only pro-
duce results for relatively short-running applications. Thus, we
supplement this approach with a faster software emulation model
and validate the correlation between the two on some representa-
tive, small benchmarks that stress key features of HFI.

Cycle accurate pipeline model.We configure the gem5 simula-
tor [46] to resemble the Intel Skylake CPU on which we natively
run the majority of our benchmarks. To support HFI, we add meta-
data registers and instructions. We add the new hmov instruction
by using a new prefix for x86’s mov, and we modify the syscall
instruction’s microcode to invoke sandbox state handlers. Further
details about the simulator’s implementation are in the appendix.

Software emulation. The gem5 simulator is several thousand
times slower than native execution. We thus primarily gauge HFI’s
performance by emulating the cost of HFI using available instruc-
tions, described in detail in the appendix. All benchmarks with
a single exception (described below) are run on an Intel Core i7-
6700K (with Skylake architecture) (4GHz) with 64GiB of RAM,

274

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

0%

20%

40%

60%

80%

100%

120%

140%
bl

ak
e3

-s
ca

la
r

ac
ke

rm
an

n
ba

se
64

ct
yp

e
fib

2
gi

m
li

ke
cc

ak
m

em
m

ov
e

m
in

ic
sv

ne
st

ed
lo

op
ra

nd
om

ra
te

lim
it

si
ev

e
sw

itc
h

xb
la

bl
a2

0
xc

ha
ch

a2
0

N
or

m
. r

un
tim

e

HFI HFI emulation

Figure 2: Accuracy of emulated HFI. We ran our hardware
simulatedHFI and software emulatedHFI side-by-side on the
Sightglass benchmarks in gem5. We see that the emulation
offers reasonable accuracy—with overheads ranging from
98%–108% of simulated overhead.

running Ubuntu 20.04.5 LTS. Our benchmark measuring the per-
formance overheads of HFI’s native sandbox (§6.4.2) is run on an
Intel Core i7-1165G7 (with Tigerlake architecture) (2.80GHz) with
16GiB of RAM, running Ubuntu 22.04.1 LTS; the second machine
supports Intel MPK and allows us to contrast its performance with
HFI. Benchmarks are run with both CPU frequency scaling and
hyperthreading disabled. We also pin benchmarks to a single CPU
that is isolated from other processes with CPU shield. We record
execution time on benchmarks using the Hyperfine timing utility,
which accounts for warmup runs and averages across several sub-
sequent runs. For the hybrid sandbox (with Wasm) evaluations, we
compile source files using stock wasi-clang (i.e., clang with Wasm
as a target) and Wasm2c set to employ different protection mecha-
nisms—guard pages, bounds-checking, or HFI emulation. We use
a native C compiler (clang or GCC) for native sandbox evaluations.
Cross validation. To vet our emulation, we compare gem5 HFI
simulation against our emulation of HFI performance using the
Sightglass benchmark suite. Sightglass consists of various short
Wasm-friendly programs, mainly primitives from cryptography,
mathematics, string manipulation, and control flow. We exclude
those Sightglass benchmarks which are incompatible with Wasm2c,
or require over a day to execute on gem5. Figure 2 shows the compar-
ison between HFI and its emulation. Across the suite, benchmarks
in software emulation have cycle counts between 98% and 108% of
the simulation. The geometric mean difference in runtime is 1.62%.

5.3 Security Evaluation
To ensure that out-of-bounds memory accesses trap, we employ a
collection of unit tests on our HFI gem5 simulation. To ensure our
simulation’s Spectre resistance, we use exploits from the Transient-
Fail [11] and Google SafeSide [24] test suites. We run the in-place
Spectre-PHT attack from Google SafeSide in the gem5 simulator
to demonstrate that sandboxed code can speculatively access se-
cret data (stored in a global variable in the host application for
this example) when executed without HFI. We then check that HFI
prevents this attack when the host application protects this global
variable using HFI’s regions (the memory range containing the
global variable is in an HFI region without read or write permis-
sions). In Figure 7 (in the appendix), we plot the memory access

40
1_b

zip
2

42
9_m

cf

43
3_m

ilc

44
4_n

am
d

44
5_g

ob
mk

45
8_s

jen
g

46
2_l

ibq
ua

ntu
m

46
4_h

26
4re

f

47
0_l

bm

47
3_a

sta
r

Geo
mea

n
0%

50%

100%

150%

No
rm

. r
un

tim
e

Guard pages Bounds checks HFI emulation

Figure 3: SPEC INT 2006 results normalized against guard
pages. Bounds-checking incurs overheads between 18.74% and
48.34%, with median and geometric mean 34.67%. On the other
hand, HFI takes between 92.51% and 107.45% the execution
time of guard pages, with median 95.88% (a speedup of 4.3%)
and geometric mean 96.85% (a speedup of 3.25%).

latencies to ensure that HFI is able to prevent speculative access of
secrets and the subsequent cache-based exfiltration. We similarly
run the in-place Spectre-BTB attack from the TransientFail test
suite, and check that this is also mitigated7.

6 HFI PERFORMANCE
We integrate HFI into standard benchmarks and real-world soft-
ware, and evaluate its performance. We examine four important
use cases: long-running applications (SPEC), library sandboxing
in a browser, a JIT-based FaaS, and native sandboxing in a server
workload (NGINX). Finally, we examine HFI as a Spectre mitigation.

6.1 SPEC 2006 Benchmark Suite
SPEC CPU 2006 is a suite of integer and floating-point workloads.
We use SPEC06 instead of SPEC17, as many of SPEC17’s bench-
marks require more memory than the 4GiB that Wasm supports.

We evaluate the impact of HFI on the subset of SPEC06 that is
compatible with Wasm and the WASI SDK fork of clang. Figure 3
shows the performance of bounds checking and HFI compared to
guard pages. These are long-running applications that do not test
HFI’s fast transitions, but do show its low cost in steady state.

In our results, we see that HFI (geomean speedup of 3.2% over
guard pages) is far less costly than bounds checking (geomean slow-
down of 34.7% over guard pages), and HFI on average is modestly
faster than guard pages. The 445.gobmk benchmark takes a little
longer with HFI as it puts heavy pressure on the instruction cache,
and in this case, we see that the hmov instructions for which we
used longer encodings, impacts HFI performance. We emphasize,
however, that HFI is the only scheme of these three that also of-
fers Spectre protections. Securing Wasm compilers against Spectre,
without HFI, incurs a 62% to 100% hit [53].

Finally, this benchmark only invokes hfi_enter and hfi_exit
once each, at the beginning and end of each benchmark; thus the
serialization overhead added to this benchmark is negligible.

7For completeness, we note that gem5 does not model BTB speculation with sufficient
detail to perform a real Spectre-BTB attack. Thus, in our tests, we instead model
a Spectre-BTB attack using concrete control flow that leaks secret data using the
cache-side channel.

275

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0%
25%
50%
75%

100%
125%
150%

1920p
best
480p 240p 1920p

default
480p 240p 1920p

none
480p 240p

N
or

m
. r

un
ti

m
e

Bounds checks Guard pages HFI emulation

Figure 4: Firefox image rendering. HFI offers a significant
speedup for image rendering— the biggest increase for larger
images that amortize the cost of hfi_enter. More compressed
images— that are more compute intensive— also see greater
benefits, as a result of decreased register pressure.

To understand why HFI improved performance, we dug into two
effects more deeply: heap growth overhead and register pressure.
Heap growth is an expensive operation in a sandbox that uses guard
pages, as it requires a call to mprotect(), while HFI can just update
a region’s bound registers. To measure this difference, we ran a
simple benchmark in Wasmtime that grows the Wasm heap from a
single page to 4GiB in 64 KiB increments. In total, the mprotect()
method takes 10.92 seconds, while HFI takes 370ms, a difference of
≈ 30×, reflecting HFIs impact on heap growth after being amortized
in the context of the Wasmtime runtime.

HFI also removes the need to load Wasm’s memory base and
bounds into general-purpose registers for software-based checks—
reducing register pressure. To approximate the impact of this, we
ran Wasmtime’s Spidermonkey benchmark, first reserving one reg-
ister, then reserving two registers. We find that reserving one reg-
ister incurs an overhead of 2.25%, while reserving two registers
incurs an overhead of 2.40%. Thus, we have a rough approximation
of the improvements HFI can offer in this dimension.

6.2 Wasm Sandboxing in Firefox
To understand the end-to-end performance impact of HFI, we mea-
sure the performance of Wasm sandboxed font and image render-
ing in Firefox, similar to Narayan et. al [52], with and without
HFI. The font rendering benchmark reflows the text on a page ten
times via the sandboxed libgraphite, using multiple font sizes
to avoid any effects from font caches. When using Wasm with
guard pages, libgraphite renders this in 1823ms; using bounds-
checking, 2022ms; and using HFI emulation, 1677ms.

We also test Firefox’s performance using a Wasm-sandboxed
libjpeg. For this, we measure decode time for JPEG-format test
images from the Image Compression benchmark suite. We use
images of three resolutions and three compression levels. Figure 4
shows the median decode times for each configuration out of 1000
runs. As expected, HFI emulation offers the fastest sandboxing
compared to the typical software-based enforcement of Wasm. HFI
is faster than software bounds checks by design: at a hardware level,
memory access validation happens in parallel with the memory
access itself. HFI is also faster than guard pages, because it can elide
calls to mprotect() (which is needed by guard pages) in favor of
relying on hardware to enforce access safety.

In the font rendering benchmark, HFI outperforms guard pages
by 8.7%. In the libjpeg tests, the speedup of HFI over guard pages

is between 14% and 37%. Even though this benchmark has a sandbox
invocation per line of pixels (a 1080x720 image requires ≈ 720 × 2
serialized enters/exits), Figure 4 shows that even with this added
overhead, HFI’s performance benefits are able to amortize this cost.

6.3 HFI’s Impact onWasm-based FaaS Platforms
One of the primary uses of Wasm (outside the browser) is to isolate
tenants from one another on FaaS platforms like Fastly’s Com-
pute@Edge [20] or Cloudflare Workers [76]. We evaluate the per-
formance and scaling impact of using HFI for such systems.

6.3.1 Cost of Sandbox Setup and Teardown. One of the bottlenecks
in FaaS platforms is the setup and teardown of sandboxes. §5.1 de-
scribes howHFI allows us to coalesce many sandbox teardowns into
one large teardown. To evaluate the impact of this optimization, we
use a custom FaaS benchmark that creates 2000 sandboxes, executes
a trivial short-lived workload on each (writes some constant data
to the sandbox’s memory) and then tears down the sandboxes.

We run this on three versions of Wasmtime: (1) stock Wasm-
time that invokes madvise() once per sandbox on teardown; (2)
HFI-wasmtime that batches madvise() teardowns; and (3) non-HFI
Wasmtime that batches madvise(), but does so without eliding
guard pages. We find that stock Wasmtime has a per-sandbox tear-
down cost of 25.7 `s, HFI-Wasmtime took 23.1 `s (a 10.1% improve-
ment), and non-HFI batched teardown took 31.1 `s. Thus coalescing
calls to madvise() during teardown improves performance, but
only when using HFI, as it lets the runtime elide guard pages.

6.3.2 Scalability of Sandbox Creation. HFI’s ability to let Wasm
runtimes elide guard pages also impacts scalability, i.e., the number
of sandboxes that can be concurrently executed by Wasm runtimes.
We test this bymeasuring the number of 1GiBWasm sandboxes that
can be created byWasmtime when it is allowed to elide guard pages
(by using HFI). When eliding guard pages, we find that Wasmtime
can create up to 256,000 1GiB sandboxes in a single process, i.e.,
the application can make full use of its address space. This 256,000
limit would be even larger for smaller-sized sandboxes.

6.4 Performance of HFI’s Native Sandbox
We also examine HFI’s native sandbox that sandboxes code without
recompilation. This has two costs — trapping syscalls and switching
protection domains. We evaluate these below.

6.4.1 Performance of Trapping Syscalls. Sandboxing systems that
isolate native code restrict its access to system resources by interpos-
ing on system calls. State-of-the-art native code isolation systems
like ERIM [75] rely on Seccomp-bpf filters for this, whereas HFI
has direct microarchitectural support for system call interposition.
To compare the overhead of these two techniques, we ran a custom
syscall benchmark that opens a file, reads it, and closes it 100,000
times, and uses Seccomp-bpf and HFI in turn to interpose on the
syscalls. We found that using Seccomp-bpf version imposes an
overhead of 2.1%, over the HFI version.

6.4.2 Switching Costs of Sandboxing OpenSSL in NGINX. We mod-
ify the NGINX webserver to estimate the performance of sand-
boxing crypto functions and session keys in OpenSSL, similar to
ERIM [75]. We use this to measure the costs of integrating HFI

276

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

Table 1: Impact of HFI Spectre protection on tail latency. We compared HFI and Swivel— the fastest software-based Spectre
mitigation, on several Wasm FaaS workloads. Swivel increased tail latency by 9%–42%. HFI’s increased tail latency by 0%–2%.

HFI Protection
XML to JSON Image classification Check SHA-256 Templated HTML

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Avg
Lat

Tail
Lat

Thru-
put

Bin
size

Lucet(Unsafe) 421ms 466ms 231 3.5MiB 12.2 s 14.7 s 1.62 34.3MiB 589ms 667ms 161 3.9MiB 45.6ms 61.8ms 2.19k 3.6MiB
Lucet+HFI 431ms 480ms 227 3.5MiB 12.2 s 14.7 s 1.62 34.3MiB 602ms 647ms 165 3.9MiB 45.7ms 61.2ms 2.18k 3.6MiB
Lucet+Swivel 559ms 616ms 174 4.1MiB 11.5 s 12.8 s 1.72 34.5MiB 645ms 709ms 150 4.6MiB 78.9ms 97.9ms 1.26k 4.2MiB

0kb 1kb 2kb 4kb 8kb 16kb 32kb 64kb 128kb
File Size

0.00
0.25
0.50
0.75
1.00

No
rm

. t
hr

ou
gh

pu
t Unmodified NGINX MPK HFI emulation

Figure 5: Overhead of the native sandbox. We emulated the
overhead of sandboxing OpenSSL in NGINX with HFI’s na-
tive sandbox. As native sandbox imposes no runtime over-
head, we are seeing the impact on the pipeline of serializing
hfi_enter and hfi_exit. HFI’s overhead is slightly larger
than MPK based sandboxes [75], as HFI must additionally
move region metadata from memory to registers.

in existing applications versus the benefits (e.g., blocking attacks
like Heartbleed [29] and Spectre). In particular, NGINX switches
in-to and out-of sandboxed code regions rapidly, when a web client
accesses encrypted content. Thus, we use this to understand the
impact of serialization added by hfi_enter and hfi_exit.

HFI’s native sandbox by design does not impose any execution
overhead, as there is no modification of the instruction stream and
region checks execute in parallel with address translation. Instead,
overheads only appear during sandbox enters and exits, metadata
manipulation (e.g., hfi_set_metadata), and traps.

Figure 5 compares the throughput of the unmodified NGINX
web server delivering content with unprotected session keys versus
the throughput when protecting session keys with HFI and MPK
respectively. Following the experimental setup of ERIM [75], we
used the apache-bench to send millions of requests of various sizes
to the NGINXweb server running on a single isolated CPU core. For
each file size, we sent 2,000,000 session requests from 100 clients for
60 seconds and measured the throughput. We observe that HFI’s
native sandbox has a low overhead that ranges from 2.9% to 6.1%.
HFI’s overhead is slightly larger thanMPK-based protections, which
range from 1.9% to 5.3%. This is because HFI takes a few cycles to
move metadata from memory to HFI registers on each transition.

6.5 Cost of Spectre Protections
We compared HFI’s Spectre protections, to the performance of
Swivel [53], the fastest known compiler-based approach mitigating
Spectre in Wasm. We evaluated this by running several common
Wasm workloads in the Rocket webserver and securing these work-
loads against Spectre. We compared Rocket with: the Lucet Wasm
compiler without Spectre protections, Lucet+Swivel-SFI protec-
tions, and with Lucet+HFI using native sandbox. We also record
the workload binaries’ sizes.

Table 1 shows that HFI guards against Spectre with very low
drop in tail-latency and no noticeable binary bloat, while Swivel
incurs noticeable overheads for the same. In fact, the only overheads
imposed by native sandbox HFI are due to region construction and
sandbox state transitions (two per connection), and these costs are
amortized by the cost of the workload.

7 RELATEDWORK
In the last few decades, diverse approaches to fine grain isola-
tion have been explored, through software-based, OS-based, and
hardware-based techniques.
Software-based isolation. SFI systems [78, 86] such as Wasm [28]
offer software-enforced isolation leveraging compilers to restrict
memory accesses to a linear region of memory, restrict control
transfers, and interpose on system calls. As discussed in §2, this
approach has broad compatibility with existing code due to its
simplicity, but incurs both a substantial virtual memory footprint
due to guard pages and performance overheads when trying to
isolate JIT code [5] or prevent Spectre attacks [53, 67] in software.
Systems that isolate computations using safe languages such as
Singularity [19] or Erlang [6] offer fast context switching and good
scalability, but cannot isolate existing code written in systems lan-
guages like C or C++. HFI is not intended to replace these systems,
but instead complements these software-based approaches with
hardware primitives for performant Spectre-safe isolation.
OS-based isolation.OS operating systems, most notably microker-
nels such as L4 [31] have long pushed the boundaries of isolation
with page-based protection hardware. Systems have experimented
with offering process-style isolation primitives to an application
through the interface of a “sandboxed thread” [13, 33]. Lightweight
contexts [43] go further and allow an existing application thread
to switch between sandboxed contexts. These systems have the
benefit of not relying on hardware changes, but have performance
overheads due to expensive protection ring crossings (calls into
the OS kernel) to switch the active sandbox, as well as restrictions
on scaling due to limits on the total hardware-supported process
contexts (ASIDs)— 4096 on Intel CPUs [35].
Hardware-assisted isolation with page metadata. Diverse sys-
tems have proposed extensions to page table metadata to store a
per-sandbox ID checked by hardware, for example Donky-x86 [66]
and others [22], or have cleverly reused the existing checked page-
level metadata (for x86 rings [40], virtual machines [9, 25, 44, 60, 81],
ARM’s memory domains [89], trusted execution environments [7,
8]) to provide isolation at a page-level. Unlike HFI, these approaches
do not require a sandboxes’ memory to be in a contiguous range.
These approaches, however, inherit the limitations of page-based
isolation (see Norton [54]). For example, they require expensive

277

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

calls to kernel code to update the page-level metadata (to grow the
sandbox-accessible memory) or switch the active sandbox; worse,
keeping this metadata consistent across CPU cores often becomes
a performance bottleneck, due to the need for expensive TLB clears
or shootdowns. Such systems also typically rely on separate tools to
interpose on syscalls that may break isolation [14, 34, 58, 65, 66, 77],
and are incompatible with zero-cost transitions [38] (fast sandbox
entries/exits that do not have to save and restore registers) since
they do not distinguish between stack and heap protection.

Intel MPK, while largely similar to the above approaches, al-
lows switching of the active MPK domain (the current sandbox) in
userspace (i.e., ring 3). MPK-based techniques [30, 34, 70, 75, 80]
have thus been explored to reduce context switch overheads and
sandbox native binaries, however these tools still face the other lim-
itations of page-based approaches described above. MPK also only
supports 15 domains/sandboxes efficiently; thus, making it unsuit-
able for server-side applications, which handle many thousands of
unique requests or even client-side applications that require dozens
or hundreds of unique contexts [52]. Techniques that attempt to
scale MPK domains do so by falling back on other page-level tech-
niques (e.g., page permissions [57], virtualization [27]) incurring
their associated performance costs.

Hardware-assisted isolation with range checks. Isolation sys-
tems have also been built around existing hardware such as x86
Segmentation [21, 86] and Intel MPX [39] which rely on explicit
bounds checks on addresses in memory operations.

Segmented memory architectures are some of the oldest pro-
tection mechanisms [42], and have been used by VMMs [1], by
operating systems like Multics [62], and for both OS components
and applications in systems like OS/2 and AS400. Earlier SFI im-
plementations such as Vx32 [21] and NaCl [86] leveraged x86 seg-
mentation on 32-bit platforms for fast isolation— an approach
that has similarities to HFI. Unfortunately, x86-64 dropped support
for segmentation, thus this technique has limited utility on current
hardware. HFI offers some primitives that are similar to x86 seg-
mentation (for example the segment/region relative addressing of
explicit regions) but pairs this with primitives adapted to the flat
memory model that can isolate unmodified applications (implicit
regions). Additionally, HFI’s abstractions and implementation are
much more minimal and tailored to in-process isolation, avoiding
complex segmentation features such as call-gates or automatically
switching privilege-levels when changing regions/segments.

Intel MPX (Memory Protection Extensions), a hardware feature
to support fine-grain memory safety, has also been re-purposed by
systems like Memsentry [39] for sandboxing. While this approach
would work well in theory, practical implementations incurred
substantial overheads comparable to software-based sandboxing, in
part due to the data dependencies created by multiple range checks
prior to memory accesses [39]. HFI, in contrast, carefully avoids
multiple range checks by design, and instead relies on a single range
check for explicit regions, and masking for implicit regions. HFI
also accounts for other requirements of isolation systems such as
system call interposition and Spectre resistance.

Newer efforts like the J-extension [47] on RISC-V have proposed
hardware for address masking (similar to the software-based ap-
proach ofWahbe et al. [78]); however, this inherits all the drawbacks

of software-based masking such as the converting of out-of-bounds
memory accesses into random memory corruption (§2).
Hardware-assisted isolationwith capabilities.Capability-based
addressing has a long history [12, 17, 18, 51, 74], and is seen most
recently inCHERI [84]. CHERI provides a powerful security model
that can represent an unlimited number of byte-granular protected
regions, which enables not just compartmentalization but also
object-level memory safety. However, it also requires extensive
modification to nearly every layer of the software and hardware
stack: including the OS [73], ABI [16], and compiler [72] and ex-
tensive hardware support. CHERI’s use of 128-bit fat pointers to
track capability metadata also comes at the cost of increased mem-
ory and cache footprint that affects performance [83]. Alternative
capability systems leveraging cryptography [41] have also been
proposed. In contrast, HFI takes a far more minimalist approach,
focusing exclusively on supporting SFI and in-process sandboxing,
and thus only requires small modifications to existing processors,
and little to no change to existing software.
Hardware changes for Spectre-resistant CPUs. Several works
like speculative taint tracking [87] and others [45, 82, 85] have
proposed redesigning the CPU’s approach to speculative execution
to prevent Spectre attacks. These approaches are complementary
to HFI in that they provide Spectre protection for general programs,
i.e., they provide protection for programs that do not run sandboxed
code, but do so at the cost of adding complexity to the CPU design.
In contrast, HFI is designed to provide isolation and Spectre safety
for sandboxing and is explicitly designed to minimize changes to
the CPU to allow easy adoption.

8 CONCLUSION
Modern page-based protection architectures are remarkably pow-
erful. They have served us for decades, during massive changes in
processor speeds, compute form factors, and workloads. However,
one thing they are not good at is the kind of fine-grain isolation
where software excels. This lack of support for fine-grain isolation
is a problem and limits the way we think about building systems.

Wasm has opened the door to a new world of in-process sand-
boxing, safe extensibility, and high-scale concurrency. However,
being software-based also brings a host of constraints that limit its
potential.

HFI offers a path beyond these constraints by supporting in-
process isolation for Wasm and native binaries that preserves the
benefits of software-based isolation: low context-switch overheads,
fast instantiation, etc. while offering a new level of safety, scalability,
and performance.

ACKNOWLEDGMENT
Thanks to Dan Gohman and Luke Wagner from Fastly and the ar-
chitects from Intel for their insightful discussions, the anonymous
reviewers and shepherd for their valuable comments for improving
the quality of this paper. This work was supported in part by a
Sloan Research Fellowship; by the NSF under Grant Numbers CNS-
2155235, CNS-2120642, and CAREER CNS-2048262; by gifts from
Intel, Google, and Mozilla; and by DARPA HARDEN under con-
tract N66001-22-9-4017. And finally, thanks to our families, without
whose support this work would not be possible.

278

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

A APPENDIX
A.1 HFI Software Interface

sandbox_t:
is_hybrid: bool # use the hybrid sandbox
is_serialized: bool # serialize enter/exit
switch_on_exit: bool # use switch-on-exit extension
exit_handler: u64 # if set, interpose on hfi_exit

#(and syscalls in native sandboxes)

hfi_enter(sandbox_t) # enter a sandbox with params
hfi_reenter() # renter the sandbox that was just exited
hfi_exit() # exit the sandbox

implicit_code_region_t:
base_prefix: u64 # base address prefix
lsb_mask: u64 # mask for address suffix
permission_exec: bool # execute permission

implicit_data_region_t:
base_prefix: u64 # base address prefix
lsb_mask: u64 # mask for address suffix
permission_read: bool # read permission
permission_write: bool # write permission

explicit_data_region_t:
Large regions: base, bound are multiples of 64k.
Small regions: region shouldn't span a 4GiB boundary
base_address: u64
bound: u64
permission_read: bool # read permission
permission_write: bool # write permission
is_large_region: bool # use large/small region

region_t = { implicit_code_region_t
| implicit_data_region_t
| explicit_data_region_t}

(0-1) code, (2-5) implicit_data, (6-10) explicit_data
region_number: u8

hfi_clear_all_regions() # clear all HFI registers
hfi_clear_region(region_number) # clear a given region
set or get HFI registers of a region
hfi_set_region(region_number, region_t *)
hfi_get_region(region_number, region_t *)

Figure 6: The HFI interface. The functions represent HFI
instructions, while the structures represent the parameters
passed in to the HFI instructions.

A.2 HFI Hardware Simulation
Gem5 simulation. We create a gem5 instance like table 2.

(1) hfi_set_region: We move data from memory into new
hardware registers we add to gem5 to store HFI metadata.
This metadata includes information such as region masks,
the exit handler etc.

(2) hfi_enter and hfi_exit: These instructions write to the
enforcement bit register to enable/disable sandboxing. We
serialize the pipeline upon these instructions. The hfi_exit
additionally jumps to a exit handler if specified.

(3) hmov: We add hmov as a variant of the x86 mov instruction
which takes a prefix. The data and code pipeline masks on
mov instructions and program counter are implemented to
avoid any delays.

0 50 100 150 200 250
ASCII code

50

100

150

200

250

Av
g.

 a
cc

es
s l

at
en

cy
 (c

yc
le

s)

Secret (ASCII code 73, 'I')
Signal threshold

Avg. access latency (no protections)
Avg. access latency with HFI

Figure 7: Access latencies in the SafeSide [24] Spectre POC.
SafeSide attacks rely on exfiltrating speculatively accessed
data via the cache; thus data access latencies indicate whether
secret data has been accessed. Without HFI, we see a clear
signal (low access latency), corresponding to accessing the
first byte of the secret (the letter ‘I’) in the SafeSide POC. In
contrast, with HFI, we don’t see access latencies that is below
the measured threshold of the Spectre attack.

(4) syscall microcode: We modify the microcode of privilege-
escalating instructions like syscall to invoke the HFI han-
dler (if specified) while inside an HFI sandbox.

Table 2: Architecture detail for the baseline x86 core

Baseline Processor
Frequency 3.3 GHz i-cache 32KiB, 8-way
Fetch Width 16 B d-cache 32KiB, 8-way
Issue Width 8 uops Decode Width 5 uops
INT/FP Regfile 186/144 regs IQ 97 entries
LQ/SQ Size 64/36 entries Functional Int ALU(4), Mult(1),
ROB Size 224 entries Units FPALU/Mult(2)

Software emulation. Overhead emulation using currently avail-
able instructions.

(1) hfi_set_region: We emulate its cost by moving the hfi
region metadata from memory to general-purpose registers.

(2) hfi_enter and hfi_exit: We use cpuid—an instruction
known to serialize the pipeline, to capture their serialization
cost [35]. hfi_exit also checks to see if a syscall handler is
specified to capture the cost that would normally occur in
the microcode implementation.

(3) hmov: We emulated it with a regular mov instruction that
uses a fixed region with a base of 0x7ffff000, i.e., one page
prior to 2GiB. This is the largest page-aligned address the
x86 mov instruction can refer to via its constant field (without
a register). We use this to emulate costs as (1) it reserves one
of the inputs to the x86 mov consistent with hmov and (2) it
captures the host program’s speedups due to not having to
use a general-purpose register to store the base.

This hmov emulation choice is deliberate as this is the largest
address x86 can address, while still allowing compilers to provide
two arguments to the mov instruction. It also captures the HFI
benefit of reduced register pressure as it allows the host program
to not consume a register for the region base.

279

Going beyond the Limits of SFI: Flexible and Secure Hardware-Assisted In-Process Isolation with HFI ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

REFERENCES
[1] Ole Agesen, Alex Garthwaite, Jeffrey Sheldon, and Pratap Subrahmanyam. 2010.

The evolution of an x86 virtual machine monitor. ACM SIGOPS Operating Systems
Review 44, 4 (2010), 3–18. https://doi.org/10.1145/1899928.1899930

[2] Akamai. 2015. Serverless Computing with Akamai Edge Workers. https://www.
akamai.com/products/serverless-computing-edgeworkers.

[3] Andreas Rossberg (Ed.). 2020. Memory64 Proposal for WebAssembly. https:
//github.com/WebAssembly/memory64.

[4] Andreas Rossberg (Ed.). 2022. Multi Memory Proposal for WebAssembly. https:
//github.com/WebAssembly/multi-memory.

[5] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen, Derek L.
Schuff, David Sehr, Cliff L. Biffle, and Bennet Yee. 2011. Language-Independent
Sandboxing of Just-in-Time Compilation and Self-Modifying Code. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). https://doi.org/10.1145/1993498.1993540

[6] Joe Armstrong. 2010. erlang. Commun. ACM 53, 9 (2010), 68–75. https:
//doi.org/10.1145/1810891.1810910

[7] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX (OSDI’16).
USENIX Association, USA, 689–703.

[8] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad
Ganesh, Jia Ma, and Wenbo Shen. 2014. Hypervision across worlds: Real-time
kernel protection from the arm trustzone secure world. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS). https:
//doi.org/10.1145/2660267.2660350

[9] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David Mazières,
and Christos Kozyrakis. 2012. Dune: Safe User-level Access to Privileged CPU
Features. In Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[10] Bugzilla Bug 1791598 2022. Evaluate expat CVE-2022-40674 fix. https://bugzilla
.mozilla.org/show_bug.cgi?id=1791598.

[11] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A Sys-
tematic Evaluation of Transient Execution Attacks and Defenses. In Proceedings
of the USENIX Security Symposium (USENIX Security).

[12] Nicholas P Carter, Stephen W Keckler, and William J Dally. 1994. Hardware
support for fast capability-based addressing. ACM SIGOPS Operating Systems
Review 28, 5 (1994). https://doi.org/10.1145/381792.195579

[13] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu. 2016.
Shreds: Fine-grained execution units with private memory. In Proceedings of the
IEEE Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.2016.12

[14] R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020. PKU
Pitfalls: Attacks on PKU-based Memory Isolation Systems. In Proceedings of the
USENIX Security Symposium (USENIX Security).

[15] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[16] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann,
Simon W. Moore, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
J. EdwardMaste, AlfredoMazzinghi, Edward Tomasz Napierala, RobertM. Norton,
Michael Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. 2019. CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege in the
POSIX C Run-Time Environment. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 379–393. https://doi.org/10.1145/3297858.3304042

[17] Jack B. Dennis and Earl C. Van Horn. 1965. Programming semantics for multi-
programmed computations. In Proceedings of the ACM Programming Languages
and Pragmatics Conference, Vol. 26. https://doi.org/10.1145/357980.357993

[18] R. S. Fabry. 1974. Capability-Based Addressing. Commun. ACM 17, 7 (jul 1974),
403–412. https://doi.org/10.1145/361011.361070

[19] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt,
James R Larus, and Steven Levi. 2006. Language support for fast and reliable
message-based communication in Singularity OS. In Proceedings of the European
Conference on Computer Systems (EuroSys). https://doi.org/10.1145/1217935.1217
953

[20] Adam Foltzer. 2019. The Lifecycle and Performance of a Lucet Instance. https:
//www.fastly.com/blog/lucet-performance-and-lifecycle. Accessed: 2022-08-10.

[21] Bryan Ford and Russ Cox. 2008. Vx32: Lightweight User-level Sandboxing on
the x86. In Proceedings of the USENIX Annual Technical Conference (ATC).

[22] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza
Sadeghi. 2018. IMIX:In-Process Memory Isolation EXtension. In Proceedings of
the USENIX Security Symposium (USENIX Security).

[23] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila Cherkasova, and
Gabriel Parmer. 2020. Sledge: A Serverless-First, Light-Weight Wasm Runtime for

the Edge. In Proceedings of the International Middleware Conference (Middleware).
https://doi.org/10.1145/3423211.3425680

[24] Google. 2020. SafeSide. https://github.com/google/safeside.
[25] Nuwan Goonasekera, William Caelli, and Colin Fidge. 2015. LibVM: an archi-

tecture for shared library sandboxing. Software: Practice and Experience 45, 12
(2015). https://doi.org/10.1002/spe.2294

[26] W3C Webassembly Community Group. 2023. Component Model design and
specification. https://github.com/webassembly/component-model. Accessed:
2022-08-20.

[27] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. EPK: Scalable and
Efficient Memory Protection Keys. In Proceedings of the USENIX Annual Technical
Conference (ATC).

[28] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web
up to speed with WebAssembly. In Proceedings of the ACM SIGPLAN Conference
on Programming language design and implementation (PLDI). https://doi.org/10
.1145/3062341.3062363

[29] Heartbleed 2014. CVE-2014-0160 Detail. https://nvd.nist.gov/vuln/detail/CVE-
2014-0160.

[30] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Iso-
lation for High-Throughput Data Plane Libraries. In Proceedings of the USENIX
Annual Technical Conference (ATC). http://www.usenix.org/conference/atc19/pr
esentation/hedayati-hodor

[31] Gernot Heiser and Kevin Elphinstone. 2016. L4 Microkernels: The Lessons from
20 Years of Research and Deployment. ACM Trans. Comput. Syst. 34, 1, Article 1
(2016), 29 pages. https://doi.org/10.1145/2893177

[32] Pat Hickey. 2019. Announcing Lucet: Fastly’s native WebAssembly compiler
and runtime. https://www.fastly.com/blog/announcing-lucet-fastly-native-
webassembly-compiler-runtime.

[33] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.
2016. Enforcing Least Privilege Memory Views for Multithreaded Applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS). https://doi.org/10.1145/2976749.2978327

[34] Bumjin Im, Fangfei Yang, Chia-Che Tsai, Michael LeMay, Anjo Vahldiek-
Oberwagner, and Nathan Dautenhahn. 2021. The Endokernel: Fast, Secure,
and Programmable Subprocess Virtualization. https://doi.org/10.48550/ARXIV.2
108.03705

[35] Intel 2020. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
[36] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019. Not So

Fast: Analyzing the Performance of WebAssembly vs. Native Code. In Proceedings
of the USENIX Annual Technical Conference (ATC).

[37] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown,
Sorin Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. 2021. Доверя́й,
но проверя́й: SFI safety for native-compiled Wasm. In Proceedings of the Network
and Distributed Systems Security Symposium (NDSS). https://doi.org/10.14722/n
dss.2021.24078

[38] Matthew Kolosick, Shravan Narayan, ConradWatt, Michael LeMay, Deepak Garg,
Ranjit Jhala, and Deian Stefan. 2022. Isolation Without Taxation: Near Zero Cost
Transitions for SFI. In Proceedings of the ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL). https://doi.org/10.1145/3498688

[39] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hard-
ware. In Proceedings of the European Conference on Computer Systems (EuroSys).
https://doi.org/10.1145/3064176.3064217

[40] Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
x86 rings: A portable user mode privilege separation architecture on x86. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). https://doi.org/10.1145/3243734.3243748

[41] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Gre-
wal, and Sreenivas Subramoney. 2021. Cryptographic Capability Computing. In
Proceedings of the Annual IEEE/ACM International Symposium onMicroarchitecture
(MICRO). https://doi.org/10.1145/3466752.3480076

[42] Henry M. Levy. 1984. Capability-based Computer Systems. Digital Press.
[43] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby

Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[44] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting
Memory Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation.
In Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). https://doi.org/10.1145/2810103.2813690

[45] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the
Principle of Transient Non-Observability. In Proceedings of the USENIX Security
Symposium (USENIX Security).

280

https://doi.org/10.1145/1899928.1899930
https://www.akamai.com/products/serverless-computing-edgeworkers
https://www.akamai.com/products/serverless-computing-edgeworkers
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
 https://github.com/WebAssembly/multi-memory
 https://github.com/WebAssembly/multi-memory
https://doi.org/10.1145/1993498.1993540
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/2660267.2660350
https://doi.org/10.1145/2660267.2660350
https://bugzilla.mozilla.org/show_bug.cgi?id=1791598
https://bugzilla.mozilla.org/show_bug.cgi?id=1791598
https://doi.org/10.1145/381792.195579
https://doi.org/10.1109/SP.2016.12
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/357980.357993
https://doi.org/10.1145/361011.361070
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1217935.1217953
https://www.fastly.com/blog/lucet-performance-and-lifecycle
https://www.fastly.com/blog/lucet-performance-and-lifecycle
https://doi.org/10.1145/3423211.3425680
https://github.com/google/safeside
https://doi.org/10.1002/spe.2294
https://github.com/webassembly/component-model
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
http://www.usenix.org/conference/atc19/presentation/hedayati-hodor
https://doi.org/10.1145/2893177
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.48550/ARXIV.2108.03705
https://doi.org/10.48550/ARXIV.2108.03705
https://doi.org/10.14722/ndss.2021.24078
https://doi.org/10.14722/ndss.2021.24078
https://doi.org/10.1145/3498688
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3243734.3243748
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/2810103.2813690

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada S. Narayan et al.

[46] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
et al. 2020. The gem5 Simulator: Version 20.0+. https://doi.org/10.48550/ARXIV
.2007.03152

[47] Martin Maas. 2022. Working Draft of the RISC-V J Extension Specification.
https://github.com/riscv/riscv-j-extension.

[48] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) than your Container. In Proceedings of the 26th Symposium on Operat-
ing Systems Principles (OSDI). https://doi.org/10.1145/3132747.3132763

[49] Jordon Mears. 2019. How we’re bringing Google Earth to the web. https:
//web.dev/earth-webassembly/.

[50] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. 2012. RockSalt: Better, Faster, Stronger SFI for the x86. In Proceedings of the
ACM SIGPLAN Conference on Programming language design and implementation
(PLDI). https://doi.org/10.1145/2254064.2254111

[51] G. J. Myers and B. R. S. Buckingham. 1980. A Hardware Implementation of
Capability-Based Addressing. SIGOPS Oper. Syst. Rev. 14, 4 (oct 1980), 13–25.
https://doi.org/10.1145/850708.850709

[52] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020. Retrofitting Fine Grain
Isolation in the Firefox Renderer. In Proceedings of the USENIX Security Symposium
(USENIX Security).

[53] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan John-
son, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean
Tullsen, and Deian Stefan. 2021. Swivel: HardeningWebAssembly against Spectre.
In Proceedings of the USENIX Security Symposium (USENIX Security).

[54] Robert M Norton. 2016. Hardware support for compartmentalisation. Technical
Report. University of Cambridge, Computer Laboratory.

[55] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and Christof
Fetzer. 2018. Intel MPX Explained: A Cross-Layer Analysis of the Intel MPX
System Stack. SIGMETRICS Perform. Eval. Rev. 46, 1 (jun 2018), 111–112. https:
//doi.org/10.1145/3292040.3219662

[56] Warren Pamukoff. 2022. Shopify Functions Unlocks Backend Logic to Help Meet
Any Business Need. https://www.shopify.com/nz/partners/blog/shopify-
functions.

[57] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
Proceedings of the USENIX Annual Technical Conference (ATC).

[58] Dinglang Peng, Congyu Liu, Tapti Palit, Pedro Fonseca, Anjo Vahldiek-
Oberwagner, and Mona Vij. 2023. uSWITCH: Fast Kernel Context Isolation
with Implicit Context Switches. In Proceedings of the IEEE Symposium on Security
and Privacy (SP).

[59] Istio Project. 2023. WebAssembly in the Istio Proxy (Envoy). https://istio.io/lates
t/docs/concepts/wasm/. Accessed: 2022-08-10.

[60] Weizhong Qiang, Yong Cao, Weiqi Dai, Deqing Zou, Hai Jin, and Benxi Liu.
2017. Libsec: A Hardware Virtualization-Based Isolation for Shared Library. In
Proceedings of the International Conference on High Performance Computing and
Communications (HPCC). https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.5

[61] RedPanda. 2021. Redpanda Wasm engine architecture. https://redpanda.com/blo
g/wasm-architecture.

[62] Jerome H. Saltzer. 1974. Protection and the Control of Information Sharing in
Multics. Commun. ACM 17, 7 (jul 1974), 388–402. https://doi.org/10.1145/3610
11.361067

[63] Jerome H Saltzer and Michael D Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (1975).

[64] Dylan Schiemann. 2020. Zoom on Web: WebAssembly SIMD, WebTransport, and
WebCodecs. https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/.

[65] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In Proceedings
of the USENIX Security Symposium (USENIX Security).

[66] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, StefanMangard, and Daniel Gruss. 2020. Donky: Domain Keys–Efficient
In-Process Isolation for RISC-V and x86. In Proceedings of the USENIX Security
Symposium (USENIX Security).

[67] Martin Schwarzl, Pietro Borrello, Andreas Kogler, KentonVarda, Thomas Schuster,
Michael Schwarz, and Daniel Gruss. 2022. Robust and Scalable Process Isolation
Against Spectre in the Cloud. In Proceedings of the European Symposium on
Research in Computer Security (ESORICS).

[68] Mark Seaborn. 2013. Sandboxing Libraries in Chrome using SFI: zlib Proof-of-
Concept. https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMs
ygPHgb61A1eTdelIYOurs/.

[69] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for
efficient stateful serverless computing. In Proceedings of the USENIX Annual
Technical Conference (ATC).

[70] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-
Unikernel Isolation with Intel Memory Protection Keys. In Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE). https://doi.org/10.1145/3381052.3381326

[71] Gang Tan. 2017. Principles and Implementation Techniques of Software-Based
Fault Isolation. Foundations and Trends in Privacy and Security 1, 3 (2017). https:
//doi.org/10.1561/3300000013

[72] The Cheri team 2022. CHERI Clang/LLVM and LLD. https://www.cl.cam.ac.uk/r
esearch/security/ctsrd/cheri/cheri-llvm.html.

[73] The Cheri team 2022. CheriBSD. https://github.com/CTSRD-CHERI/cheribsd.
[74] The IBM i architecture 2022. Getting started with IBM i. https://developer.ibm.

com/articles/i-newtoibmi/.
[75] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,

Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK). In Proceedings of the USENIX Security
Symposium (USENIX Security).

[76] Kenton Varda. 2018. WebAssembly on Cloudflare Workers. https://blog.cloudfla
re.com/webassembly-on-cloudflare-workers/.

[77] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You shall not (by) pass! practical, secure, and fast PKU-based sandboxing. In
Proceedings of the European Conference on Computer Systems (EuroSys). https:
//doi.org/10.1145/3492321.3519560

[78] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (Asheville, North Carolina, USA)
(SOSP ’93). Association for Computing Machinery, New York, NY, USA, 203–216.
https://doi.org/10.1145/168619.168635

[79] Evan Wallace. 2017. WebAssembly cut Figma’s load time by 3x. https://www.fig
ma.com/blog/webassembly-cut-figmas-load-time-by-3x/.

[80] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and Efficient In-Process Monitor (and Library) Protection with Intel MPK.
In Proceedings of the European Workshop on Systems Security (EuroSec). https:
//doi.org/10.1145/3380786.3391398

[81] Nicholas C Wanninger, Joshua J Bowden, Kirtankumar Shetty, Ayush Garg, and
Kyle C Hale. 2022. Isolating functions at the hardware limit with virtines. In
Proceedings of the European Conference on Computer Systems (EuroSys). https:
//doi.org/10.1145/3492321.3519553

[82] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas F.Wenisch, and Baris Kasikci. 2019.
NDA: Preventing Speculative Execution Attacks at Their Source. In Proceedings
of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
https://doi.org/10.1145/3352460.3358306

[83] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert M.
Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo,
A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Wat-
son, and Simon W. Moore. 2019. CHERI Concentrate: Practical Compressed
Capabilities. IEEE Trans. Comput. 68, 10 (2019), 1455–1469. https://doi.org/10.1
109/TC.2019.2914037

[84] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Nor-
ton, and Michael Roe. 2014. The CHERI Capability Model: Revisiting RISC
in an Age of Risk. SIGARCH Comput. Archit. News 42, 3 (2014). https:
//doi.org/10.1145/2678373.2665740

[85] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution
invisible in the cache hierarchy. In Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.
2018.00042

[86] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client:
A Sandbox for Portable, Untrusted x86 Native Code. In Proceedings of the IEEE
Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.2009.25

[87] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W. Fletcher. 2020. Speculative Taint Tracking (STT): A Comprehen-
sive Protection for Speculatively Accessed Data. IEEE Micro 40, 3 (2020), 81–90.
https://doi.org/10.1109/MM.2020.2985359

[88] Zakai. Alon 2020. WasmBoxC: Simple, Easy, and Fast VM-less Sandboxing.
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html.

[89] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. ARMlock:
Hardware-based fault isolation for ARM. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS). https://doi.org/10
.1145/2660267.2660344

Received 2022-10-20; accepted 2023-01-19

281

https://doi.org/10.48550/ARXIV.2007.03152
https://doi.org/10.48550/ARXIV.2007.03152
https://github.com/riscv/riscv-j-extension
https://doi.org/10.1145/3132747.3132763
https://web.dev/earth-webassembly/
https://web.dev/earth-webassembly/
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/850708.850709
https://doi.org/10.1145/3292040.3219662
https://doi.org/10.1145/3292040.3219662
https://www.shopify.com/nz/partners/blog/shopify-functions
https://www.shopify.com/nz/partners/blog/shopify-functions
https://istio.io/latest/docs/concepts/wasm/
https://istio.io/latest/docs/concepts/wasm/
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.5
https://redpanda.com/blog/wasm-architecture
https://redpanda.com/blog/wasm-architecture
https://doi.org/10.1145/361011.361067
https://doi.org/10.1145/361011.361067
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1561/3300000013
https://doi.org/10.1561/3300000013
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html
https://github.com/CTSRD-CHERI/cheribsd
https://developer.ibm.com/articles/i-newtoibmi/
https://developer.ibm.com/articles/i-newtoibmi/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1145/3492321.3519560
https://doi.org/10.1145/168619.168635
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1145/3380786.3391398
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3492321.3519553
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1145/2678373.2665740
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1109/MM.2020.2985359
https://kripken.github.io/blog/wasm/2020/07/27/ wasmboxc.html
https://doi.org/10.1145/2660267.2660344
https://doi.org/10.1145/2660267.2660344

	Abstract
	1 Introduction
	2 Limitations of SFI
	3 The HFI design and interface
	3.1 HFI Overview
	3.2 Isolating Data & Control Flow with Regions
	3.3 Sandboxing with HFI
	3.4 Mitigating Spectre

	4 Architecture design
	4.1 Implicit Regions
	4.2 Explicit Regions
	4.3 Region Updates
	4.4 Enters, Exits, Sandbox Types, & System Calls
	4.5 Mitigating Spectre

	5 Experimental methodology
	5.1 Integrating HFI into Wasm
	5.2 Hardware Simulation
	5.3 Security Evaluation

	6 HFI performance
	6.1 SPEC 2006 Benchmark Suite
	6.2 Wasm Sandboxing in Firefox
	6.3 HFI's Impact on Wasm-based FaaS Platforms
	6.4 Performance of HFI's Native Sandbox
	6.5 Cost of Spectre Protections

	7 Related work
	8 Conclusion
	A Appendix
	A.1 HFI Software Interface
	A.2 HFI Hardware Simulation

	References

