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ABSTRACT
Spectre vulnerabilities violate our fundamental assumptions about
architectural abstractions, allowing attackers to steal sensitive data
despite previously state-of-the-art countermeasures. To defend
against Spectre, developers of verification tools and compiler-based
mitigations are forced to reason about microarchitectural details
such as speculative execution. In order to aid developers with these
attacks in a principled way, the research community has sought
formal foundations for speculative execution upon which to rebuild
provable security guarantees.

This paper systematizes the community’s current knowledge
about software verification and mitigation for Spectre. We study
state-of-the-art software defenses, both with and without associ-
ated formal models, and use a cohesive framework to compare
the security properties each defense provides. We explore a wide
variety of tradeoffs in the complexity of formal frameworks, the
performance of defense tools, and the resulting security guarantees.
As a result of our analysis, we suggest practical choices for devel-
opers of analysis and mitigation tools, and we identify several open
problems in this area to guide future work on grounded software
defenses.

1 INTRODUCTION
Spectre attacks have upended the foundations of computer secu-
rity [41]—showing that attackers can violate security boundaries
and steal secrets despite countermeasures such as process isola-
tion [74], software fault isolation (SFI) [69], and control flow integrity
(CFI) [1]. In response, the security community has been working on
program analysis tools to both find Spectre vulnerabilities and to
guide mitigations (e.g., compiler passes) that make real programs
secure in the presence of this class of attacks. However, because
Spectre attacks—and speculative execution in general—violate our
typical assumptions and abstractions, they have proven particularly
challenging to reason about and to defend against.

We have unfortunately gotten off to a rocky start. For example,
the MSVC compiler’s /Qspectre flag—one of the first compiler
defenses [49]—inserts mitigations by finding Spectre vulnerability
patterns. Since these patterns are not based in any rigorous analysis,
the compiler easily misses similarly vulnerable code patterns [54].
As another example, Chrome adopted process isolation as its core
defense mechanism against Spectre attacks [56]. This is also un-
sound: [14] shows that Spectre attacks can be performed across the
process boundary, and [57] shows how to read cross-origin data in
the browser. More generally, there have been many defense mecha-
nisms against Spectre that turned out to be unsound, incomplete
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(and thus missed possible attacks), or overly conservative and thus
slow.

To thoroughly defend against Spectre, we should take the lessons
learned about similar problems in the non-speculative world and
transfer those lessons into the new speculative context. One key
lesson is that language-based methods provide an effective means
to achieve efficient code with provable security guarantees. For exam-
ple, the security community turned to language-based security to
solidify intricate defense techniques—from SFI enforcement on x86
processors [52], to information flow control [58], to using constant-
time programming to eliminate traditional side-channel attacks [7].
Language-based methods are rooted in program semantics, which
provide rigorous models of program behavior, and serve as the ba-
sis for formal security policies. These policies help us carefully and
explicitly spell out our assumptions about the attacker’s strength,
and to gain confidence that our tools are sound with respect to this
class of attackers—that standalone Spectre vulnerability-detection
tools find all of the vulnerabilities they claim to, or that defense
techniques (e.g., compiler passes) actually mitigate the attacks they
claim.

Formal foundations don’t just help us make sure our Spectre
defenses are secure, they also help improve the performance of
our tools. Without formalizations, Spectre defenses are usually
either overly conservative (unnecessarily flagging code as vulnera-
ble, which ultimately leads to unnecessary and slow mitigations)
or overly aggressive (and thus vulnerable). For example, specula-
tive load hardening [15] is safe—it safely eliminates Spectre-PHT
attacks—but is overly conservative: It assumes that all array in-
dexing operations must be hardened. Aggressive techniques like
oo7 [71] are both inefficient and unsafe—they impose unnecessary
restrictions yet also miss vulnerable code patterns. Foundations
allow us to craft defenses that are, in some sense, minimal (e.g.,
they target the precise locations where vulnerabilities exist [29, 67])
while still being provably secure.

Alas, not all foundations are equally practical. Since speculative
execution breaks common assumptions about program semantics—
the cornerstone of language-based methods—existing Spectre foun-
dations explore different design choices, many of which have im-
portant ramifications on defense tools and the software produced
or analyzed by these tools. For instance, one key choice is the leak-
age model of the semantics, which determines what the attacker is
allowed to observe. Another choice is the execution model, which
simultaneously captures the attacker’s strength and which Spec-
tre variants the resulting analysis (or mitigation) tool can reason
about. These choices also determine which security policies can be
captured, and the precision of analysis and mitigation methods.

In this paper, we systematize the community’s knowledge on
Spectre foundations and identify the different design choices made
by existing work and their tradeoffs. For example, while there
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are many choices for a leakage model, the constant-time [7] and
sandbox isolation [29] models are the most pragmatic; leakage
models that only consider the data cache trade off security for no
clear benefits (e.g., of scalability or precision). As another example,
sensible execution models borrow (again) from the constant-time
paradigm: They are detailed enough to capture practical attacks,
but abstract across different hardware—and are thus useful for both
verification andmitigation of software. Other models which capture
microarchitectural details like cache structures make the analysis
unnecessarily complicated: They do not fundamentally capture
additional attacks, and they give up on portability. Throughout, we
discuss the limitations of existing frameworks, the defense tools
built on top of these foundations, and future directions for research.

Contributions.We systematize knowledge of software Spectre de-
fenses and their associated formalizations, by studying the choices
available to developers of Spectre analysis and mitigation tools.
Specifically, we:
▶ Study existing foundations for Spectre analysis in the form of

semantics, discuss the different design choices which can be
made in a semantics, and describe the tradeoffs of each choice.

▶ Compare many proposed Spectre defenses—both with and with-
out formal foundations—using a shared framework, and with
an emphasis on the differences in the security guarantees they
offer.

▶ Identify open research problems, both for foundations and for
Spectre software defenses in general.

▶ Provide recommendations both for developers and for the re-
search community in order to produce stronger security guaran-
tees.

Scope of systematization. In this systematization, we focus on
software-only defenses for Spectre attacks. In particular we focus
on Spectre and not other transient attacks (such as Meltdown [45],
LVI [66], MDS [34], or Foreshadow [65]), in large part because most
existing work on software-only defenses also focuses on Spectre
attacks—no current tool provides precise detection of any of the
other transient attacks at the software level. More fundamentally,
many of these other attacks can only be addressed in the hardware,
through microcode updates or proprietary changes, making soft-
ware defenses moot. We focus on defenses as other works [14] have
already given excellent overviews of the types of Spectre vulner-
abilities and the powerful capabilities which they give attackers.
And we focus on software-only defenses because they allow us to
defend against today’s attacks on today’s hardware. Proposals for
hardware defenses are also valuable, but hardware design cycles
(and hardware upgrade cycles) are long; software-only defenses
will continue to play a valuable role for the foreseeable future.

2 PRELIMINARIES
In this section, we first discuss Spectre attacks and how they violate
security in two particular application domains: high-assurance
cryptography and isolation of untrusted code. Then, we provide an
introduction to formal semantics for security and its relevance to
secure speculation in these application domains.

if (i < len) {
int c1 = input[i];
int c2 = sbox[c1];
// ...

}

Figure 1: Code snippet which an attacker can exploit using
Spectre. In this example, out-of-bounds data is leaked via
the data cache state.

2.1 Spectre vulnerabilities
Spectre [4, 6, 32, 41, 42, 47, 77] is a recently discovered family of
vulnerabilities due to speculative execution on modern processors.
Spectre allows attackers to learn sensitive information by caus-
ing the processor to mispredict the targets of control flow (e.g.,
conditional jumps or indirect calls) or data flow (e.g., aliasing or
value forwarding). When the processor learns that its prediction
was wrong, it rolls back execution, erasing the programmer-visible
effects of the speculation. However, microarchitectural state—such
as the state of the data cache—is still modified during speculative
execution; these changes can be leaked during speculation and can
persist even after rollback. As a result, the attacker can recover
sensitive information from the microarchitectural state, even if the
sensitive information was only speculatively accessed.

Figure 1 gives an example of a function where an attacker can
exploit a branch misprediction to leak information via the data
cache. The attacker can first prime the branch to predict that the
condition i < len is true, by causing the code to repeatedly run
with appropriate values of i. Then, the attacker provides an out-of-
bounds value for i. The processor (mis)predicts that the condition
is still true and speculatively loads out-of-bounds data into c1;
subsequently, it uses the value c1 as part of the address of a memory
read operation. This encodes the value of c1 into the data cache
state: depending on the value of c1, different cache lines will be
accessed and cached. Once the processor resolves the misprediction,
it rolls back execution, but the data cache state persists. The attacker
can later interpret the data cache state in order to infer the value
of c1.

2.2 Breaking cryptography with Spectre
High-assurance cryptography has long relied on constant-time

programming [7] in order to create software which is secure from
timing side-channel attacks. Constant-time programming dictates
that both control flow (e.g., conditional branches) and memory
addresses (e.g., offsets into arrays) are not influenced by secret in-
formation [7, 9]. These rules ensure that secrets remain safe from
an attacker with the ability to perform cache attacks on either the
instruction or data cache, exfiltrate data via branch predictor state,
or even infer secret data from port contention in the microarchitec-
ture [11]. The rules can also easily be extended to consider timing
leaks due to variable-latency instructions (e.g., floating-point, SIMD,
or integer division on many processors) [3].

Unfortunately, in the face of Spectre, standard constant-time
programming is insufficient: For example, Figure 1 is constant-time
if the input array only contains public data (and i and len are also
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public). Despite this, a Spectre attack can still abuse this code to
leak secret data from elsewhere in memory.

Secret-dependent memory addresses are not the only way for an
attacker to learn cryptographic secrets. In the following example,
an attacker can again (speculatively) leak out-of-bounds data, but
this time the leak is via control flow.

if (i < len) {
int c1 = input[i];
switch(c1) {

case 'A': /* ... */
case 'B': /* ... */
// ...

} }

Instead of using c1 as part of the address of a memory operation, this
code uses c1 as part of a branch condition (in a switch statement). In
this case, the attacker could potentially recover the cryptographic
secret (speculatively stored in c1) in several ways, including: (1)
based on the different execution times of the various cases; (2)
through the data cache, based on differing (benign) memory ac-
cesses performed in the various cases; (3) through the instruction
cache, based on which instructions were (speculatively) accessed;
or (4) through port contention [11] or other microarchitectural
resource pressure, based on which instructions were (speculatively)
executed.

By avoiding secret-dependent memory accesses, control flow,
and variable-latency instructions—even speculatively—we can pre-
vent any secrets from being leaked to the attacker, by any of the
above mechanisms. This illustrates why high-assurance crypto-
graphic code must extend the constant-time principle to the domain
of speculative execution.

2.3 Breaking software isolation with Spectre
Spectre attacks also break important guarantees in the domain of
software isolation. In this domain, a host application accepts and
executes untrusted code, and wants to ensure that the untrusted
code cannot access any of the host’s data. Common examples of
host applications include JavaScript or WebAssembly runtimes, or
even the Linux kernel, through eBPF [24]. Spectre attacks can break
the memory safety and isolation mechanisms commonly used in
these settings [38, 53, 63].

The following code gives an example of a Spectre vulnerability
in an isolation context.

int guest_func() {
get_host_val(1);
get_host_val(1);
// ...
char c = get_host_val(99999);
// leak c

}

// Guests can call this to get values from the array
// host_arr, which has 100 characters.
char get_host_val(int idx) {

if (idx < 100) {
return host_arr[idx];

} else {
return 0; // out-of-bounds!

} }

Here, an attacker-supplied guest function guest_func is allowed to
call the host function get_host_val to get values from the array
host_arr, which has 100 characters. Although get_host_val() im-
plements a bounds check, the attacker is still able to speculatively
access out-of-bounds data by training the bounds check to pass.
Once the attacker (speculatively) obtains an out-of-bounds value of
their choosing, they can leak the value using any number of mech-
anisms and then recover it after the speculative rollback, as in the
previous examples. In this setting, since the attacker supplies the
untrusted guest code, the isolation policy needs to ensure that the
guest cannot even speculatively obtain a secret value in a register.

2.4 Security properties and execution
semantics

Developers of formal analyses define safety from Spectre attacks
as a security property of a formal (operational) semantics. The se-
mantics abstractly captures how a processor executes a program as
a series of state transitions. The states, which we will write as 𝜎 ,
include any information the developer will need to track for their
analysis, such as the current instruction or command and the con-
tents of memory and registers. The developer then defines an execu-
tion model—a set of transition rules that specify how state changes
during execution. For example, in a semantics for a low-level assem-
bly, a rule for a store instruction will update the resulting state’s
memory with a new value.

More importantly, the rules in the execution model determine
how and when speculative effects happen. For example, in a sequen-
tial semantics, a conditional branch will evaluate its condition then
step to the appropriate branch. A semantics that models branch
prediction will instead predict the condition result and step to the
predicted branch. We adapt notation from Guarnieri et al. [29]:
The J · Kseq model represents standard sequential execution, while
J · Kpht models prediction on conditional branches. Other execution
models are listed in Figure 3.

Next, to precisely specify the attacker model, the developer must
define which leakage observations—information produced during
an execution step—are visible to an attacker. For example, we may
decide that rules with memory accesses leak the addresses being
accessed. The set of leakage observations in a semantics’ rules
is its leakage model. We again borrow notation from [29], which
defines the leakage models J · Kct and J · Karch. The J · Kct model
exposes leakage observations relevant to constant-time security:
The sequence of control flow (the execution trace) and the sequence
of addresses accessed in memory (the memory trace).1 The J · Karch
model exposes the values loaded from memory in addition to the
addresses.2 Since the leakage observations in J · Karch are a strict
superset of those in J · Kct, we say that J · Karch is stronger than J · Kct,
meaning that it models a more powerful attacker. In fact, with
J · Karch, effectively all computation is leaked to the attacker. Thus,
J · Karch is most useful for software isolation: A sandbox verifier, for
example, will want to prove that a guest sandbox cannot retrieve
any data at all from outside its sandbox boundary.

1Like [29], we omit variable-latency instructions from our formal model for simplicity.
2Equivalently, it exposes the trace of register values [29].
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The execution model and leakage model of a semantics together
form its contract. For example, a semantics for sequential constant-
time has the contract J · Kseqct . The contract governs the attacker-
visible information produced when executing a program: Given a
program 𝑝 , a semantics with contract J · K𝛼

ℓ
, and an initial state 𝜎 ,

we write J𝑝K𝛼
ℓ
(𝜎) for the sequence (or trace) of leakage observations

the semantics produces when executing 𝑝 .
After determining a proper contract, the developer must finally

define the policy that their security property enforces: Precisely
which data can and cannot be leaked to the attacker. Formally, a
policy is given as an equivalence relation ≃𝜋 over states, where
𝜎1 ≃𝜋 𝜎2 iff 𝜎1 and 𝜎2 agree on all values that are public (but may
differ on sensitive values).

Armed with these definitions, we can state security as a non-
interference property over execution states. Informally, if a program
satisfies non-interference, then an attacker cannot determine any-
thing about any secret values even if they have all leakage observa-
tions.

Definition 1 (Non-interference). Program𝑝 satisfies non-interference
with respect to a given contract J · K and policy 𝜋 if, for all pairs of
𝜋-equivalent initial states 𝜎 and 𝜎 ′, executing 𝑝 with each initial
state produces the same trace. That is, 𝑝 ⊢ NI (𝜋, J · K) is defined as

∀𝜎, 𝜎 ′ : 𝜎 ≃𝜋 𝜎 ′ ⇒ J𝑝K (𝜎) = J𝑝K (𝜎 ′).

A developer has several choices when crafting a suitable seman-
tics and security policy; these choices greatly influence how easy
or difficult it is to detect or mitigate Spectre vulnerabilities. We
cover these choices in detail in Section 3. In Sections 3.1 and 3.2,
we discuss choices in leakage models J · K

ℓ
and security policies 𝜋 .

In Sections 3.3 and 3.4, we discuss tradeoffs for different execution
models J · K𝛼 and the nature of the transition rules in a semantics.
In Section 3.5, we discuss how the input language of the seman-
tics affects analysis; and finally, in Section 3.6, we discuss which
microarchitectural features to include in formal models.

3 CHOICES IN SEMANTICS
The foundation of a well-designed Spectre analysis tool is a care-
fully constructed formal semantics. Developers face a wide variety
of choices when designing their semantics—choices which heavily
depend on the attacker model (and thus the intended application
area) as well as specifics about the tool they want to develop. Cryp-
tographic code requires different security properties, and therefore
different semantics and tools, than in-process isolation. Many of
these choices also look different for detection tools, focused only on
finding Spectre vulnerabilities, vs.mitigation tools, which transform
programs to be secure. In this section, we describe the important
choices about semantics that developers face, and explain those
choices’ consequences for Spectre analysis tools and for their as-
sociated security guarantees. We also point out a number of open
problems to guide future work in this area.

Whatmakes a practical semantics? Apractical semantics should
make an appropriate tradeoff between detail and abstraction: It
should be detailed enough to capture the microarchitectural behav-
iors which we’re interested in, but it should also be abstract enough
that it applies to all (reasonable) hardware. For example, we don’t

want the security of our code to be dependent on a specific cache
replacement policy or branch predictor implementation.

In this respect, formalisms for constant-time have been success-
ful in the non-speculative world: The principles of constant-time
programming—no secrets for branches, no secrets for addresses—
create secure code without introducing processor-specific abstrac-
tions. Speculative semantics should follow this trend, producing
portable tools which can defend against powerful attackers on
today’s (and tomorrow’s) microarchitectures.

3.1 Leakage models
Any semantics intended to model side-channel attacks needs to pre-
cisely define its attacker model. An important part of the attacker
model for a semantics is the leakage model—that is, what informa-
tion does the attacker get to observe? Leakage models intended to
support sound mitigation schemes should be strong—modeling a
powerful attacker—and hardware-agnostic, so that security guar-
antees are portable. That said, the best choice for a leakage model
depends in large part on the intended application domain.
Leakagemodels for cryptography.As we saw in Section 2.2, high-
assurance cryptography implementations have long relied on the
constant-time programming model; thus, semantics intended for
cryptographic programs naturally choose the J · Kct leakage model.
Like the constant-time programming model in the non-speculative
world, the J · Kct leakage model is strong and hardware-agnostic,
making it a solid foundation for security guarantees. The J · Kct
leakage model is a popular choice among existing formalizations:
As we highlight in Figure 2, over half of the formal semantics for
Spectre use the J · Kct leakage model (or an equivalent) [8, 16, 21, 27,
28, 55, 67]. Guarnieri et al. [29] leave the leakage model abstract,
allowing the semantics to be used with several different leakage
models, including J · Kct.
Leakage models for isolation. Sections 2.3 and 2.4 described the
J · Karch leakage model more suited to speculative isolation—e.g.,
JavaScript orWebAssembly runtimes which execute untrusted code.
Like J · Kct, this is a hardware-agnostic leakage model, well-suited
to providing solid security guarantees. The J · Karch leakage model
is, however, less-frequently considered in formal models: Only
two of the semantics in Figure 2 ([18, 29]) use the J · Karch leakage
model. Spectre sandbox isolation frameworks such as Swivel [53],
Venkman [63], and ELFbac [38] appear to use the J · Karch model
as a guide, as do SpecFuzz [54] and certain modes of oo7 [71].
Unfortunately, many of these tools are not formalized, so their
leakage models are not explicit (and clear).
Weaker leakage models. The remaining semantics and tools in
Figure 2 consider only the memory trace of a program, but not
its execution trace. The J · Kmem leakage model, like J · Kct, allows
an attacker to observe the sequence of memory accesses during
the execution of the program. The J · Kcache leakage model instead
tracks (an abstraction of) cache state. The attacker in this model can
only observe cached addresses at the granularity of cache lines. A
few tools have leakagemodels evenweaker than these—for instance,
oo7 only emits leakages that it considers can be influenced by
malicious input (see Section 3.3), and KLEESpectre (with cache
modeling enabled) only allows the attacker to observe the final
state of the cache once the program terminates.
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Semantics or tool name Level Leakage Variants Nondet. Fence OOO Win. Tool Impl.

Cauligi et al. [16] (Pitchfork) Low J · Kct P,B,M P,B,R,S Directives ✓ ✓ ✓ Det* Taint

Cheang et al. [18] Low J · Karch P,M,S,R P Oracle ✓ × ✓ Det/Mit SelfC+

Daniel et al. [21] (Binsec/Haunted) Low J · Kct P,M P,S Mispredict × × ✓ Det SelfC

Guanciale et al. [27] (InSpectre) Low J · Kct P,M P,B,R,S — ✓ ✓ × — —

Guarnieri et al. [28] (Spectector) Low J · Kct P,B,M P Oracle ✓ × ✓ Det SelfC+

Guarnieri et al. [29] Low (parametrized) P1 Oracle ✓ ✓ ✓ Det SelfC+

Mcilroy et al. [48] Low J · Kcache T P2 Oracle ∽ × ✓ Mit* Manual

Barthe et al. [8] (Jasmin) Medium J · Kct P,B,M P,S Directives ✓ × × Det Safety

Patrignani and Guarnieri [55] Medium J · Kct P,B,M,L3 P1 Mispredict ✓ × ✓ — —

Vassena et al. [67] (Blade) Medium J · Kct B,M P Directives ✓ ✓ × Mit Flow

Colvin and Winter [19] High J · Kmem M P Weak-mem ✓ ✓ × Val Val

Disselkoen et al. [22] High J · Kmem M P Weak-mem ✓ ✓ × — —

AISE [73] — J · Kcache C P Mispredict × × ✓ Det Cache+

ELFbac [38] — J · Karch L P — ×4 × × Mit Struct

KLEESpectre [70]
(w/ cache) — J · Kcache C P Mispredict ✓ × ✓ Det Cache

(w/o cache) — J · Kmem M P Mispredict ✓ × ✓ Det Taint

oo7 [71]
(v1 pattern) — J · Kmem M P — ∽ × ✓ Det/Mit Flow

(“weak” and v1.1 patterns) — J · Karch L P — ∽ × ✓ Det/Mit Flow

SpecFuzz [54] — J · Karch L P Mispredict — — — Det Fuzz

SpecuSym [30] — J · Kcache C P Mispredict × × ✓ Det SelfC+

Swivel [53]
(poisoning protection) — J · Kmem M P,B,R — ∽5 × × Mit Struct

(breakout protection) — J · Karch L P,B,R — ∽5 × × Mit Struct

Venkman [63] — J · Karch L P,B,R — ∽ × × Mit Struct

Level – How abstract is the semantics? (Section 3.5) Leakage – What can the attacker observe? (Section 3.1) Variants (Section 3.3)

Low Assembly-style, with branch instructions P – Path / instructions executed L – Values loaded from memory P – Spectre-PHT
Medium Structured control flow such as if-then-else B – Speculation rollbacks R – Values in registers B – Spectre-BTB
High In the style of weak memory models M – Addresses of memory operations S – Branch predictor state R – Spectre-RSB
— The work has no associated formal semantics C – Cached lines / cache state T – Step counter / timer S – Spectre-STL

Fence – Does it reason about speculation fences?

✓ Fully reasons about fences in the target/input code Nondet. – How is nondeterminism handled? (Section 3.4)

∽
The mitigation tool inserts fences, but the analysis doesn’t reason about fences in the
target/input code (and thus can’t verify the mitigated code as secure) OOO – Models out-of-order execution? (Section 3.6)

× Does not reason about, or insert, fences Win. – Can reason about speculation windows? (Section 3.3)

Tool – Does the paper include a tool?

Det Includes a tool that can be used to detect insecure programs or verify secure programs
Mit Includes a tool that can be used to modify programs to ensure they are secure
Val Includes a tool that is only used to validate the semantics and doesn’t automatically perform any security analysis
— Does not include a tool
* The tool’s connection to the semantics is incomplete or unclear (e.g., tool does not implement the full semantics)

Implementation – How does the tool detect or mitigate vulnerabilities? (Section 3.4)

Taint Taint tracking (abstract execution) Manual Manual effort
Safety Memory safety (abstract execution) Fuzz Fuzzing
SelfC Self composition (abstract execution) Flow Data flow analysis
Cache Cache must-hit analysis (abstract execution) Struct Structured compilation

+ Includes additional work or constraints to remove sequential trace (Section 3.2)

Figure 2: Comparison of various semantics and tools. Semantics are sorted by Level, then alphabetically; works without seman-
tics are ordered last. 1Extension to other variants is discussed, but not performed. 2Semantics includes indirect jumps and rules
to update the indirect branch predictor state, but can’t mispredict indirect jump targets. 3“Weak” variants of semantics leak
loaded values during non-speculative execution. 4ELFbac mitigates Spectre-PHT without inserting fences. 5Swivel operates
on WebAssembly, which does not have fences. However, Swivel can insert fences in its assembly backend.
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All of these models, including J · Kmem and J · Kcache, are weaker
than J · Kct—they model less powerful attackers who cannot observe
control flow. As a result, they miss attacks which leak via the in-
struction cache or which otherwise exploit timing differences in the
execution of the program. They even miss some attacks that exploit
the data cache: If a sensitive value influences a branch, an attacker
could infer the sensitive value through the data cache based on
differing (benign) memory access patterns on the two sides of the
branch, even if no sensitive value influences a memory address. For
instance, in the following code, even though cond doesn’t directly
influence a memory address, an attacker could infer the value of
cond based on whether arr[a] is cached or not:

if (cond) {
b = arr[a];

} else {
b = 0;

}

Because the J · Kmem and J · Kcache leakagemodels miss these attacks,
they cannot provide the strong guarantees necessary for secure
cryptography or software isolation. Tools which want to provide
sound verification or mitigation should choose a strong leakage
model appropriate for their application domain, such as J · Kct or
J · Karch.

That said, weaker leakage models are still useful in certain set-
tings: Tools which are interested in only a certain vulnerability class
can use these weaker models to reduce the number of false positives
in their analysis or reduce the complexity of their mitigation. Even
though these models may miss some Spectre attacks—even some
data cache leakage, as discussed above—some detection tools still
use the J · Kcache or J · Kmem models to find Spectre vulnerabilities in
real codebases. Using a leakage model which ignores control flow
leakage may help the detection tool scale to larger codebases.

Some tools [30, 70] also provide the ability to reason about what
attacks are possible with particular cache configurations—e.g., with
a particular associativity, cache size, or line size. This is a valu-
able capability for a detection tool: It helps an attacker zero in on
vulnerabilities which are more easily exploitable on a particular
target machine. However, security guarantees based on this kind
of analysis are not portable, as executing a program on a different
machine with a different cache model invalidates the security anal-
ysis. Tools that instead want to make guarantees for all possible
architectures, such as verifiers or compilers, will need more con-
servative leakage models—models that assume the entire memory
trace (and execution trace) is always leaked.

Openproblems: Leakagemodels forweak-memory-style seman-
tics.We have described leakage models only in terms of observa-
tions of execution traces; this is a natural way to define leakage for
operational semantics, where execution is modeled simply as a set
of program traces. However, the weak-memory-style speculative
semantics of [19, 22] have a more structured view of program ex-
ecution, for instance using pomsets [26]. Both of these semantics
define leakages in a way equivalent to the J · Kmem leakage model; it
remains an open problem to explore how to define J · Kct or J · Karch
leakage in this more structured execution model—in particular,
what it means for such a semantics to allow an attacker to observe
control-flow leakage.

Open problems: Leakage models for language-based isolation.
As with most work on Spectre foundations, we focus on cryptog-
raphy and software-based isolation. Spectre, though, can be used
to break most other software abstractions as well—from module
systems [31] and object capabilities [46] to language-based isolation
techniques like information flow control [58]. How do we adopt
these abstractions in the presence of speculative execution? What
formal security property should we prove? And what leakage model
should be used?

3.2 Non-interference and policies
After the leakage model, we must determine what secrecy policy
we consider for our attacker model—i.e., which values can and
cannot be leaked. Domains such as cryptography and isolation
already have defined policies for sequential security properties. For
cryptography, memory that contains secret data (e.g., encryption
keys) is considered sensitive. Isolation simply declares that all mem-
ory outside the program’s assigned sandbox region should not be
leaked.

The straightforward extension of sequential non-interference to
speculative execution is to simply enforce the same leakage model
with the same policy (e.g., NI (𝜋, J · Kphtct ))—no secrets should be
leaked whether in normal or speculative execution. We refer to this
straightforward extension as a direct non-interference property, or
direct NI.

Alternatively, we may instead want to assert that the specula-
tive trace of a program has no new sensitive leaks as compared
to its sequential trace. This is a useful property for compilers and
mitigation tools that may not know the secrecy policy of an input
program, but want to ensure the resulting program does not leak
any additional information. We term this a relative non-interference
property, or relative NI; a program that satisfies relative NI is no
less secure than its sequential execution.

Definition 2 (Relative non-interference). Program 𝑝 satisfies rela-
tive non-interference from contract J · Kseqa to J · K𝛽b and with policy 𝜋
if: For all pairs of low-equivalent initial states 𝜎 and 𝜎 ′, if executing
𝑝 under J · Kseqa produces equal traces, then executing 𝑝 under J · K𝛽b
produces equal traces. That is, 𝑝 ⊢ NI (𝜋, J · Kseqa ⇒ J · K𝛽b ) is defined
as

∀𝜎, 𝜎 ′ : 𝜎 ≃𝜋 𝜎 ′ ∧ J𝑝Kseqa (𝜎) = J𝑝Kseqa (𝜎 ′)

=⇒ J𝑝K𝛽b (𝜎) = J𝑝K𝛽b (𝜎
′).

As before, we may elide 𝜋 for brevity.
Interestingly, any relative non-interference property𝑁𝐼 (𝜋, J · Kseqa ⇒

J · K𝛽b ) for a program 𝑝 can be expressed equivalently as a direct

property 𝑁𝐼 (𝜋 ′, J · K𝛽b ), where 𝜋
′ = 𝜋 \ 𝑐𝑎𝑛𝐿𝑒𝑎𝑘 (𝑝, J · Kseqa ). That is,

we treat anything that could possibly leak under contract J · Kseqa as
public. Relative NI is thus a weaker property than direct NI, as it
implicitly declassifies anything that might leak during sequential
execution.

However, relative NI is a stronger property than a conventional
implication. For example, the property NI (J · Kseqct ) ⇒ NI (J · Kphtct )
makes no guarantees at all about a program that is not sequentially
constant-time. Conversely, the relative NI propertyNI (J · Kseqct ⇒ J · Kphtct )
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guarantees that even if a program is not sequentially constant-time,
the sensitive information an attacker can learn during the pro-
gram’s speculative execution is limited to what it already might
leak sequentially.

In Figure 3, we classify speculative security properties of differ-
ent works by which direct or relative NI properties they verify or
enforce. We find that tools focused on verifying cryptography or
memory isolation verify direct NI properties, whereas frameworks
concerned with compilation or inserting Spectre mitigations for
general programs tend towards relative NI.

Verifying programs. Direct NI unconditionally guarantees that
sensitive data is not leaked, whether executing sequentially or
speculatively. Thismakes it ideal for domains that already have clear
policies about what data is sensitive, such as cryptography (e.g.,
secret keys) or software isolation (e.g., memory outside the sandbox).
Indeed, tools that target cryptographic applications ([8, 16, 21, 67])
all verify that programs satisfy the direct speculative constant-time
(SCT) property.

Additionally, we find that current tools which verify relative NI
(e.g., [18, 28]) are indeed capable of verifying direct NI, but inten-
tionally add constraints to their respective checkers to “remove”
sequential leaks from their speculative traces. Although this is just
as precise, it is an open problem whether tools can verify relative
NI for programs without relying on a direct NI analysis.

Verifying compilers. On the other hand, compilers and mitigation
tools are better suited to verify or enforce relative NI properties:
The compiler guarantees that its output program contains no new
leakages as compared to its input program. This way, developers
can reason about their programs assuming a sequential model, and
the compiler will mitigate any speculative effects. For instance, if a
program 𝑝 is already sequentially constant-time NI (J · Kseqct ), then
a compiler that enforces NI (J · Kseqct ⇒ J · Kphtct ) will compile 𝑝 to a
program that is speculatively constant-time NI (J · Kphtct ). Similarly,
if a program is properly sandboxed under sequential execution
NI (J · Kseqarch), and is compiled with a compiler that introduces no
new arch leakage, the resulting program will remain sandboxed
even speculatively. Indeed, these propositions are proven in [29].

Patrignani andGuarnieri [55] specifically explore compiler preser-
vation, defining a property they term Robust SNI Preservation (RSNIP):
A compiler in their framework satisfies RSNIP if, for all programs
𝑝 in their (sequential) source language semantics that satisfy RSNI
(see Figure 3), the translation of 𝑝 to the (speculative) hardware
semantics also satisfies RSNI. However, since all programs in their
source language trivially satisfy RSNI, and since their source and
target language differ only in the speculative execution (or lack
thereof), a compiler that satisfies RSNIP is a therefore a compiler
that enforces RSNI on all programs it compiles.

3.3 Execution models
To reason about Spectre attacks, a semantics must be able to rea-
son about the leakage of sensitive data in a speculative execution
model. A speculative execution model is what differentiates a specu-
lative semantics from standard sequential analysis, and determines
what speculation the abstract processor can perform. For develop-
ers, choosing a proper execution model is a tradeoff: On the one

hand, the choice of behaviors their model allows—i.e., which mi-
croarchitectural predictors they include—determines which Spectre
variants their tools can capture. On the other hand, considering
additional kinds of mispredictions inevitably makes their analysis
more complex.

Spectre variants and predictors.Most semantics and tools in Fig-
ure 2 only consider the conditional branch predictor, and thus only
Spectre-PHT attacks. (Mis)predictions from the conditional branch
predictor are constrained—there are only two possible choices for
every decision—so the analysis remains fairly tractable. Jasmin [8],
Binsec/Haunted [21], and Pitchfork [16] all additionally model store-
to-load (STL) predictions, where a processor forwards data to a
memory load from a prior store to the same address. If there are
multiple pending stores to that address, the processor may choose
the wrong store to forward the data—this is the root of a Spectre-
STL attack. STL predictions are less constrained than predictions
from the conditional branch predictor: In the absence of additional
constraints, they allow for a load to draw data from any prior store
to the same address.

Other prediction mechanisms (e.g., the BTB or RSB) are signifi-
cantly more complex. An RSB misprediction can cause execution
to jump to a prior (and possibly stale) return site [42, 47], while
a BTB misprediction can send execution nearly anywhere in the
program [41].3 Capturing these behaviors in a semantics is possi-
ble, but the resulting analysis is not practical or useful; in practice,
developers need to make tradeoffs. For example, the semantics
in [16] can express all of the aforementioned variants of Spectre,
but their analysis tool Pitchfork only detects PHT- and STL-based
vulnerabilities.

The InSpectre semantics [27] goes even further—it allows the pro-
cessor to mispredict arbitrary values, even the values of constants.
InSpectre also allows more out-of-order behavior than most other
semantics (see Section 3.6)—in particular, it allows the processor
to commit writes to memory out-of-order. As a result, InSpectre is
very expressive: It is capable of describing a wide variety of Spectre
variants both known and unrealized. But, with such an expressive
semantics, InSpectre cannot feasibly be used to verify programs;
instead, the authors pose InSpectre as a framework for reasoning
about and analyzing microarchitectural features themselves.

Speculation windows. As shown in Figure 2, several semantics
and tools limit speculative execution byway of a speculation window.
This models how hardware has finite resources for speculation, and
can only speculate through a certain number of instructions or
branches at a time.

Explicitly modeling a speculation window serves two purposes
for detection tools. One, it reduces false positives: a mispredicted
branch will not lead to a speculative leak thousands of instructions
later. And two, it bounds the complexity of the semantics and thus
the analysis. Since the abstract processor can only speculate up
to a certain depth, an analysis tool need only consider the latest
window of instructions under speculative execution. Some seman-
tics refine this idea even further: Binsec/Haunted [21], for example,
uses different speculation windows for load-store forwarding than
it uses for branch speculation.

3Including, on x86-family processors, into the middle of an instruction [10].
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Property or tool name Non-interference prop. Precision

Mcilroy et al. [48] ≈NI (J · Kphtct ) hyper

oo7 [71] Φ𝑠𝑝𝑒𝑐𝑡𝑟𝑒 ≈NI (J · Kphtmem) taint1
Φ𝑤𝑒𝑎𝑘
𝑠𝑝𝑒𝑐𝑡𝑟𝑒 , Φ

𝑣1.1
𝑠𝑝𝑒𝑐𝑡𝑟𝑒 ≈NI (J · Kphtarch)

Cache analysis [30, 73] NI (J · Kphtcache)
hyper

[70] taint

Weak memory modeling [19, 22] NI (J · Kphtmem) hyper

[67] NI (J · Kphtct ) taint

Speculative constant-time (SCT)2 [8, 21] NI (J · Kpht-stlct ) hyper

[16] NI (J · Kpbrsct )3 hyper, taint

Speculative non-interference (SNI) [28, 29] NI (J · Kseqct ⇒ J · Kpht— )4 hyper

Robust speculative non-interference (RSNI) [55]
NI (J · Kseqct ⇒ J · Kphtct )

hyper
Robust speculative safety (RSS) [55] taint

Conditional noninterference [27] NI (J · Kseqct ⇒ J · Kpbrsct ) hyper

Weak speculative non-interference (wSNI) [29] NI (J · Kseqarch ⇒ J · Kpht— )4,5 hyper

Weak robust speculative non-interference (RSNI−) [55]
NI (J · Kseqarch ⇒ J · Kphtct )

hyper
Trace property-dependent observational determinism (TPOD) [18] hyper
Weak robust speculative safety (RSS−) [55] taint

Execution models (Section 3.3) Precision of the defined security property

J · Kseq Sequential execution hyper Non-interference hyperproperty, requires two low-equivalent executions
J · Kpht Captures Spectre-PHT taint Sound approximation using taint tracking, requires only one execution
J · Kpht-stl Captures Spectre-PHT/-STL
J · Kpbrs Captures Spectre-PHT/-BTB/-RSB/-STL

Figure 3: Speculative security properties in priorworks and their equivalent non-interference statements.Wewrite≈NI (· · ·) for
unsound approximations of non-interference properties. 1[71] tracks taint of attacker influence rather than value sensitivity.
2These works all derive their property from the definition given in [16] and share the same property name despite differences
in execution mode. 3The analysis tool of [16], Pitchfork, only verifies the weaker property NI (J · Kpht-stlct ). 4The definitions of
SNI and wSNI are parameterized over the target leakagemodel. 5The definition of wSNI in [29] does not require that the initial
states be low-equivalent.

Speculation windows are also valuable for mitigation tools: al-
though tools like Blade [67] and Jasmin [8] are able to prove se-
curity without reasoning about speculation windows, modeling a
speculation window would reduce the number of fences (or other
mitigations) these tools need to insert, improving the performance
of the compiled code.
Eliminating variants. Instead of modeling all speculative behav-
iors, compilers and mitigation tools can use clever tricks to sidestep
particularly problematic Spectre variants. For example, even though
Jasmin [8] does not model the RSB, Jasmin programs do not suffer
from Spectre-RSB attacks: The Jasmin compiler inlines all func-
tions, so there are no returns to mispredict. Mitigation tools can
also disable certain classes of speculation with hardware flags [33].
After eliminating complex or otherwise troublesome speculative
behavior, a tool only needs to consider those that remain.
In-place vs. out-of-place training. Previous systematizations of
Spectre attacks [14] differentiate between attacks with in-place
and out-of-place training. In-place attacks are generally simpler
to perform, as they rely on repeatedly executing the victim code

itself in order to train a microarchitectural predictor. Out-of-place
attacks are more powerful, as they allow an attacker to perform
the training step on a branch within the attacker’s own code rather
than the victim code.

Most of the semantics and tools in Figure 2 make no distinction
between in-place and out-of-place attacks, as they ignore the me-
chanics of training and consider all predictions to be potentially
malicious. A notable exception is oo7 [71], which explicitly tracks
attacker influence. Specifically, oo7 only considers mispredictions
for conditional branches which can be influenced by attacker input.
Thus, oo7 effectively models only in-place training. Unfortunately,
as a result, oo7 misses Spectre vulnerabilities in real code, as demon-
strated by Wang et al. [70].

3.4 Nondeterminism
Speculative execution is inherently nondeterministic: Any given
branch in a program may proceed either correctly or incorrectly,
regardless of the actual condition value. More generally, predictors
such as the BTB can send execution to an entirely indeterminate
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location. The semantics in Figure 2 all allow these nondeterministic
choices to be actively adversarial—for instance, given by attacker-
specified directives [16, 67], or, equivalently, by consulting an ab-
stract oracle [18, 28, 29, 48]. These semantics all (conservatively)
assume that the attacker has full control of microarchitectural pre-
diction and scheduling; we explore the different techniques they
use to verify or enforce security in the face of adversarial nondeter-
minism.
Exploring nondeterminism. Several Spectre analysis tools are
built on some form of abstract execution: They simulate specu-
lative execution of the program by tracking ranges or properties
of different values. By checking these properties throughout the
program, they determine if sensitive data can be leaked. Standard
tools for (non-speculative) abstract execution are designed only to
consider concrete execution paths; they must be adapted to handle
the many possible nondeterministic execution paths from specula-
tion. SpecuSym [30], KLEESpectre [70], and AISE [73] handle this
nondeterminism by following an always-mispredict strategy. When
they encounter a conditional branch, they first explore the execu-
tion path which mispredicts this branch, up to a given speculation
depth. Then, when they exhaust this path, they return to the cor-
rect branch. This technique of course only handles the conditional
branch predictor; i.e., Spectre-PHT attacks. Pitchfork [16] and Bin-
sec/Haunted [21] adapt the always-mispredict strategy to addition-
ally account for out-of-order execution and Spectre-STL. Although
it may not be immediately clear that these always-mispredict strate-
gies are sufficient to prove security, especially when the attacker
can make any number of antagonistic prediction choices, these
strategies do indeed form a sound analysis [16, 21, 28].

Unfortunately, simulating execution only works for semantics
where the nondeterminism is relatively constrained: Conditional
branches are a simple boolean choice, and store-to-load predictions
are limited to prior memory operations within the speculation
window. If we pursue other Spectre variants, we will quickly be-
come overwhelmed—again, an unconstrained BTB can land almost
anywhere in a program. The always-mispredict strategy here is
nonsensical at best; abstract execution is thus necessarily limited
in what it can soundly explore.
Abstracting out nondeterminism. Mitigation tools have more
flexibility dealing with nondeterminism: Tools like Blade [67] and
oo7 [71] apply dataflow analysis to determine which values may
be leaked along any path, instead of reasoning about each path
individually. Then, these tools insert speculation barriers to preemp-
tively block potential leaks of sensitive data. This style of analysis
comes at the cost of some precision: Blade, for example, conserva-
tively treats all memory accesses as if they may speculatively load
sensitive values, as its analysis cannot reason about the contents
of memory. However, Blade (and mitigation tools in general) can
afford to be less precise than verification and detection tools—these
must maintain higher precision to avoid floods of false positives.
Restricting nondeterminism.Compilers such as Swivel [53], Venkman [63],
and ELFbac [38] restructure programs entirely, imposing their own
restricted set of speculative behavior at the software layer. ELFbac
allocates sensitive data in separate memory regions and uses page
permission bits to disallow untrusted code from accessing these re-
gions of memory—regardless of how a program may misspeculate,

it will not be able to read (and thus leak) sensitive data. Swivel and
Venkman compile code into carefully aligned blocks so that indi-
rect jumps always land at the tops of protected code blocks, even
speculatively; Swivel accomplishes this by clearing the BTB state
after untrusted execution, while Venkman proposes to recompile
all programs on the system. Developers that use these compilers
can then reason about their programs much more simply, as the set
of speculative behaviors is restricted enough to make the analysis
tractable. Of the techniques discussed in this section, this line of
work seems the most promising: It produces mitigation tools with
strong security guarantees, without relying on an abundance of
speculation barriers (as often results from dataflow analysis) or
resorting to heavyweight simulation (such as symbolic execution).

3.5 Higher-level abstractions
Spectre attacks—and speculative execution—fundamentally break
our intuitive assumptions about how programs should execute.
Higher-level guarantees about programs no longer apply: Type
systems or module systems are meaningless when even basic con-
trol flow can go awry. In order to rebuild higher-level security
guarantees, we first need to repair our model of how programs exe-
cute, starting from low-level semantics. Once these foundations are
firmly in place, only then can we rebuild higher-level abstractions.
Semantics for assembly or IRs. The majority of formal seman-
tics in Figure 2 operate on abstract assembly-like languages, with
commands that map to simple architectural instructions. Semantics
at this level implement control flow directly in terms of jumps to
program points—usually indices into memory or an array of pro-
gram instructions—and treat memory as largely unstructured. Since
these low-level semantics closely correspond to the behavior of real
hardware, they capture speculative behaviors in a straightforward
manner, and provide a foundational model for higher-level rea-
soning. Similarly, many concrete analysis tools for constant-time
or Spectre operate directly on binaries or compiler intermediate
representations (IRs) [16, 20, 21, 28, 70]. These tools operate at this
lowest level so that their analysis will be valid for the program
unaltered—compiler optimizations for higher-level languages can
end up transforming programs in insecure ways [9, 20, 21]. As a
result however, these tools necessarily lose access to higher-level
information such as control flow structure or how variables are
mapped in memory.
Semantics for structured languages. The semantics in [8], [55],
and [67] build on top of these lower-level ideas to describe what we
term “medium-level” languages—those with structured control flow
and memory, e.g., explicit loops and arrays. For these medium-level
semantics, it is less straightforward to express speculative behavior:
For instance, instead of modeling speculation directly, Vassena et
al. [67] first translate programs in their source language to lower-
level commands, then apply speculative execution at that lower
level.

In exchange, the structure in a medium-level semantics lends
itself well to program analysis. For example, Vassena et al. are able
to use a simple type system to prove security properties about a pro-
gram. Barthe et al. [8] also take advantage of structured semantics:
They prove that if a sequentially constant-time program is specu-
latively (memory) safe—i.e., all memory operations are in-bounds
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array accesses—then the program is also speculatively constant-
time. Since their source semantics can only access memory through
array operations, they can statically verify whether a program is
speculatively safe (and thus speculatively secure). An interesting
question for future work is whether their concept of speculative
(memory) safety can combine with other sequential security prop-
erties to give corresponding speculative guarantees, such as for
sandboxing, information flow, or rich type systems.
Weak-memory-style semantics. Colvin and Winter [19] and Dis-
selkoen et al. [22] both present a further abstracted semantics in
the style of weak memory models. These semantics represent a
fundamentally different approach: Rather than creating operational
models of speculative hardware, these authors lift the concept of
speculative execution directly to a higher level and reason about it
there.

These works provide interesting insights about the relation be-
tween Spectre attacks and the weak memory models which charac-
terize modern hardware. They also open the door to adapting anal-
ysis and design techniques from that community to defend against
Spectre attacks in software. However, as these models are abstracted
away from microarchitectural details, they are only suited for ana-
lyzing particular Spectre variants—both [19] and [22] focus only on
Spectre-PHT—and are difficult to adapt to other attacks. In addition,
it remains an open problem to translate a semantics of this style
into a concrete analysis tool: Neither [19] nor [22] present a tool
which can automatically perform a security analysis of a target pro-
gram.4 That said, this high-level approach to speculative semantics
is certainly underexplored compared to the larger body of work on
operational semantics, and is worthy of further investigation.
Compiler mitigations.With adequate foundations in place, one
avenue to regaining higher-level abstractions is to modify com-
pilers of higher-level languages to produce speculatively secure
low-level programs. Many compilers already include options to con-
servatively insert speculation barriers or hardening into programs,
which (when done properly) provides strong security guarantees.
Although some such hardening passes have been verified [55], they
are overly conservative and incur a significant performance cost.
Other compiler mitigations been shown unsound [54]—or worse,
even introduce new Spectre vulnerabilities [21]—further supporting
our position that these techniques must be grounded in a formal
semantics.
Open problems: Formalization of new compilation techniques.
Swivel [53], Venkman [63], and ELFbac [38] show how the struc-
ture of code itself can provide security guarantees at a reduced
performance cost. For instance, [53, 63] demonstrate that orga-
nizing instructions into bundles or linear blocks respectively can
restrict BTB and RSB mispredictions, making these Spectre vari-
ants tractable to analyze and mitigate. However, none of these
compiler-based approaches are yet grounded in a formal semantics.
Formalizing these systems would increase our confidence in the
strong guarantees they claim to provide.
Open problems: New languages. Another promising approach is
to design new languages which are inherently safe from Spectre
attacks. Prior work has produced secure languages like FaCT [17],
4Colvin and Winter do present a tool, but it is only used to mechanically explore
manually translated programs.

which is (sequentially) constant-time by construction. An exten-
sion of FaCT, or a new language built on its ideas, could prevent
Spectre attacks as well. Vassena et al. [67] have already taken a
first step in this direction: They construct a simple while-language
which is guaranteed safe from Spectre-PHT attacks when compiled
with their fence insertion algorithm. It would be valuable to extend
this further, both to more realistic (higher-level) languages, and to
more Spectre variants. The key question is whether dedicated lan-
guage support can provide a path to secure code that outperforms
the de-facto approach: Compiling standard C code with Spectre
mitigations.

3.6 Expressivity and microarchitectural
features

One theme of this paper has been that a good (practical) semantics
needs to have an appropriate amount of expressivity: On one hand,
we want a semantics which is expressive—able to model a wide
range of possible behaviors (e.g., Spectre variants). This allows us
to model powerful attackers. On the other hand, a semantics which
is too expressive—allows toomany possible behaviors—makesmany
analyses intractable. One fundamental purpose of semantics is to
provide a reasonable abstraction (simplification) of hardware to
make analysis easier; a semantics which is too expressive simply
punts this problem to the analysis writer. Thus, choosing howmuch
expressivity to include in a semantics represents an interesting
tradeoff.

By far the most important choice for the expressivity of a seman-
tics is which misprediction behaviors to allow—i.e., which Spectre
variants to reason about. We discussed these tradeoffs in Section 3.3.
But beyond speculative execution itself, there are many other mi-
croarchitectural features which could be relevant for a security
analysis, and which have been—or could be—modeled in a specu-
lative semantics. These features also affect the expressivity of the
semantics, which means that choosing whether to include them
results in similar tradeoffs.
Out-of-order execution. Many speculative semantics simulate a
processor feature called out-of-order execution: they allow instruc-
tions to be executed in any order, as long as those instructions’ de-
pendencies (operands) are ready. Out-of-order execution is mostly
orthogonal to speculative execution; in fact, out-of-order execution
is not required to model Spectre-PHT, -BTB, or -RSB—speculative
execution alone is sufficient. However, out-of-order execution is
included in most modern processors, and for that reason,5 many
speculative semantics also model out-of-order execution. Modeling
out-of-order execution may provide an easier or more elegant way
to express a variety of Spectre attacks, as opposed to modeling
speculative execution alone. Further, as a result of including out-of-
order execution in their respective semantics, [22] and [27] propose
to abuse out-of-order execution to conduct (at least theoretical)
novel side-channel attacks.6

That said, althoughmodeling out-of-order execution might make
the semantics simpler, the additional expressivity definitely makes

5Or, perhaps because out-of-order execution is often discussed alongside, or even
confused with, speculative execution
6Disselkoen et al. [22] propose to abuse compile-time instruction reordering, which is
different from microarchitecture-level out-of-order execution, but related.
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the resulting analysis more complex. Fully modeling out-of-order
execution leads to an explosion in the number of possible executions
of a program; naively incorporating out-of-order execution into a
detection ormitigation tool results in an intractable analysis. Indeed,
while Guarnieri et al. [29] and Colvin and Winter [19] present
analysis tools based on their respective out-of-order semantics,
they only analyze very simple Spectre gadgets, not code used in
real programs. Instead, for analysis tools based on out-of-order
semantics to scale to real programs, developers need to use lemmas
to reduce the number of possibilities the analysis needs to consider.
As one example, Pitchfork [16] operates on a set of “worst-case
schedules” which represent a small subset of all possible out-of-
order schedules. The developers formally argue that this reduction
does not affect the soundness of Pitchfork’s analysis.

Caches and TLBs. Some speculative semantics and tools ([30, 48,
70, 73]) include abstract models of caches, where the cache state
captures which addresses may be in the cache at a given time. One
could imagine also including detailed models of TLBs. As discussed
in Section 3.1, modeling caches or TLBs is probably not helpful,
at least for mitigation or verification tools—not only does it make
the semantics more complicated, but it potentially leads to non-
portable guarantees. In particular, including a model of the cache
usually leads to the J · Kcache leakage model, rather than the J · Kct
or J · Karch leakage models which provide stronger defensive guar-
antees. Following in the tradition of constant-time programming
in the non-speculative world, it seems wiser for our analyses and
mitigations to be based on microarchitecture-agnostic principles as
much as possible, and not depend on details of the cache or TLB
structure.

Other leakage channels. There are a variety of specific microar-
chitectural mechanisms which could result in leakages, beyond
the ones we’ve been focusing on in this paper. For instance, in
the presence of multithreading, port contention in the processor’s
execution units can reveal sensitive information [11]; and many
processor instructions, e.g., floating-point or SIMD instructions,
can reveal information about their operands through timing side-
channels [5]. Most existing semantics do not model these effects.
However, the commonly-used J · Kct and J · Karch leakage models
are strong enough to already capture leakages from most of these
sources: for instance, port contention can only reveal sensitive
data if the sensitive data influenced which instructions are being
executed—and the J · Kct leakage model would have already consid-
ered the sensitive data leaked once it influenced control flow. For
variable-time instructions, most works’ definitions of J · Kct don’t
capture this leakage, but extending those definitions to cover it is
straightforward [3]. In both of these examples, the J · Karch leakage
model would capture all of the leaks, because it (even more con-
servatively) would already consider the sensitive data leaked once
it reached a register, long before it could influence control-flow
or be used in a variable-time instruction. Although modeling any
of these effects more precisely could increase the precision with
which an analysis detects potential vulnerabilities, the tradeoff in
analysis complexity is probably not worth it, and for mitigation
and verification tools, the J · Kct and J · Karch leakage models provide
stronger and more generalizable guarantees.

In a similar vein, most semantics and tools do not explicitly
model parallelism or concurrency: They reason only about single-
threaded programs and processors. Instead, they abstract away
these details by giving attackers broad powers in their models—
e.g., complete power over all microarchitectural predictions, and
the capability to observe the full cache state after every execution
step. The notable exceptions are the weak-memory-style semantics
presented by Colvin and Winter [19] and Disselkoen et al. [22]—
multiple threads are an inherent feature for this style of semantics.
These semantics may be a promising vehicle for further exploring
the interaction between speculation and concurrency. For other
semantics, adding detailed models of multithreading is probably
not worth the increased analysis complexity.
Openproblems: Process isolation. In practice, a common response
to Spectre attacks has been to move all secret data into a sepa-
rate process—e.g., Chrome isolates different sites in separate pro-
cesses [56]. This shifts the burden to OS engineers from application
and runtime system engineers. Developing Spectre foundations to
model the process abstraction would elucidate the security guaran-
tees of such systems. This would be especially useful since there
is evidence showing that the process boundary does not keep an
attacker from performing out-of-place training of the conditional
branch predictor, or from leaking secrets via the cache state [14].

4 RELATEDWORK
There has been a lot of interest in Spectre and other transient exe-
cution attacks, both in industry and in academia. We discuss other
systematization papers that address Spectre attacks and defenses,
and we briefly survey related work which otherwise falls outside
the scope of this paper.

4.1 Systematization of Spectre attacks and
defenses

Canella et al. [14] present a comprehensive systematization and
analysis of Spectre and Meltdown attacks and defenses. They first
classify transient execution attacks by whether they are a result
of misprediction (Spectre) or an execution fault (Meltdown); then
they further classify the attacks by their root microarchitectural
cause, yielding the nomenclature we use in this paper (e.g., Spectre-
PHT is named for the pattern history table). They then categorize
previously known Spectre attacks, revealing several new variants
and exploitation techniques for each. Canella et al. also propose a
sequence of “phases” for a successful Spectre or Meltdown attack,
and group published defenses by the phase they target. A followup
survey by Canella et al. [13] expands on the idea of attack phases,
categorizing both hardware and software Spectre defenses accord-
ing to which attack phase they prevent: preparation, misspeculation,
data access, data encoding, leakage, or decoding. In contrast, our
systematization focuses on the formal semantics behind Spectre
analysis and mitigation tools rather than the specifics of attack
variants or types of defenses.

4.2 Hardware-based Spectre defenses
In this paper, we focus only on software-based techniques for exist-
ing hardware. The research community has also proposed several
hardware-based Spectre defenses based on cache partitioning [40],
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cleaning up the cache state after misprediction [59], or making the
cache invisible to speculation by incorporating some separate inter-
nal state [2, 39, 75]. Unfortunately, attackers can still use side chan-
nels other than the cache to exploit speculative execution [11, 62].
NDA [72] and Speculative Taint Tracking (STT) [76] block addi-
tional speculative covert channels by analyzing and classifying
instructions that can leak information.

Fadiheh et al. [23] define a property for hardware execution
that they term UPEC: A hardware that satisfies UPEC will not
leak speculatively anything more than it would leak sequentially.
I.e., UPEC is equivalent to the relative non-interference property
NI (𝜋, J · Kseqarch ⇒ J · Kphtarch).

4.3 Software-hardware co-design
Although hardware-only approaches are promising for future de-
signs, they require significant modifications and introduce non-
negligible performance overhead for all workloads. Several works
instead propose a software-hardware co-design approach. Taram et
al. [64] propose context-sensitive fencing, making various specula-
tive barriers available to the software. Li et al. [44] propose memory
instructions with a conditional speculation flag. Context [60] and
SpectreGuard [25] allow software to mark secrets in memory. This
information is propagated through the microarchitecture to block
speculative access to the marked regions. SpecCFI [43] suggests
a hardware extension similar to Intel CET [37] that provides tar-
get label instructions with speculative guarantees. Finally, several
recent proposals allow partitioning branch predictors based on
context provided by the software [68, 78]. As these approaches
require both software and hardware changes, we will need a formal
semantics to apply them correctly. Adapting Spectre semantics to
software-hardware co-design would be valuable future work.

4.4 Other transient execution attacks
We focus exclusively on Spectre, as other transient execution attacks
are probably better addressed in hardware. For completeness, we
briefly discuss these other attacks.
Meltdown variants. The Meltdown attack [45] bypasses implicit
memory permission checks within the CPU during transient ex-
ecution. Unlike Spectre, Meltdown does not rely on executing in-
structions in the victim domain, so it cannot be mitigated purely
by changes to the victim’s code. Foreshadow [65] and microarchi-
tectural data sampling (MDS) [12, 34] demonstrate that transient
faults and microcode assists can still leak data from other security
domains, even on CPUs that are resistant to Meltdown. Researchers
have extensively evaluated these Meltdown-style attacks leading
to new vulnerabilities [50, 51, 61], but most recent Intel CPUs have
hardware-level mitigations for all these vulnerabilities in the form
of microcode patches or proprietary hardware fixes [36].
Load value injection. Load value injection (LVI) [66] exploits the
same root cause as Meltdown, Foreshadow, and MDS. But LVI re-
verses these attacks: The attacker induces the transient fault into
the victim domain instead of crafting arbitrary gadgets in their own
code space. This inverse effect is subject to an exploitation tech-
nique similar to Spectre-BTB for transiently hijacking control flow.
Although there are software-based mitigations proposed against
LVI [35, 66], Intel only suggests applying them to legacy enclave

software. Like Meltdown, LVI does not need software-based mit-
igation on recent Intel CPUs, and our systematization does not
apply.

5 CONCLUSION
Spectre attacks break the abstractions afforded to us by conven-
tional execution models, fundamentally changing how we must
reason about security. We systematize the community’s work to-
wards rebuilding foundations for formal analysis atop the loose
earth of speculative execution, evaluating current efforts in a shared
formal framework and pointing out open areas for future work in
this field.

We find that, as with previous work in the sequential domain,
solid foundations for speculative analyses require proper choices
for semantics and attacker models. Most importantly, developers
must consider leakage models no weaker than J · Karch or J · Kct.
Weaker models—those that only capture leaks via memory or the
data cache—lead to weaker security guarantees with no clear bene-
fit. Next, though many frameworks focus on Spectre-PHT, sound
tools must consider all Spectre variants. Although this can increase
the complexity of analysis, developers can combine analyses with
structured compilation techniques—e.g., to restrict or remove entire
categories of Spectre attacks by construction. Finally, we recom-
mend against modeling unnecessary (micro)architectural details
in favor of the simpler J · Karch and J · Kct models; details like cache
structures, port contention, or hyperthreading introduce complex-
ity and give up on portability.

When properly rooted in formal guarantees, software Spectre
defenses provide a firm foundation on which to rebuild secure
systems. We intend this systematization to serve as a reference
and guide for those seeking to build atop formal frameworks and
to develop sound Spectre defenses with strong, precise security
guarantees.
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