
CopyCat: Controlled
Instruction-Level

Attacks on Enclaves
• Daniel Moghimi

• Jo Van Bulck

• Nadia Heninger

• Frank Piessens

• Berk Sunar

Intel Labs –

Sept. 10 2020

OS/Hypervisor Security Model

2

Hardware

Hypervisor

OS

App App App

Traditional Security Model

Tr
u
st

e
d

Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

3

Hardware

Hypervisor

OS

App App App

Traditional Security Model

Tr
u
st

e
d

Hardware

Hypervisor

OS

App App App

Traditional Security Model

Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU

4

Traditional Security Model

Hardware

Hypervisor

OS

App App App

Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU

• Protects against system
level adversary

New Attacker Model:

Attacker gets full control over OS

5

Hardware

Hypervisor

OS

App App App

Traditional Security Model

blocked

blocked

Hardware

App

Intel SGX Attack Taxonomy

6

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

SGX Attacks

Intel’s

Responsibility

Foreshadow [1]

Plundervolt [2]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

Intel SGX Attack Taxonomy

7

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

Intel SGX Attack Taxonomy

8

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

µarch Side

Channel

Cache [3][4][5]

Branch Predictors

[6][7]

Interrupt Latency [8]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.
[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.
[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

Intel SGX Attack Taxonomy

9

• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic

• Deterministic Attacks
• Page Fault, A/D Bit, etc. (4kB Granularity)

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Foreshadow [1]

Plundervolt [2]

Deterministic

– Ctrl Channel
µarch Side

Channel

Cache [3][4][5]

Branch Predictors

[6][7]

Interrupt Latency [8]

Page Fault [9]

A/D Bit [10]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.
[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.
[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

[9] Xu et al. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." IEEE S&P 2015.
[10] Wang, Wenhao, et al. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." ACM CCS 2017.

CopyCat
Attack

10

CopyCat Attack

11

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

TimeEnclave

Execution

Thread

Starts

CopyCat Attack

12

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

Time𝑡1 𝑡2

IRQ

Range

CopyCat Attack

13

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

Time𝑡1 𝑡2

IRQ

Range

3

4

CopyCat Attack

14

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

CopyCat Attack

15

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

CopyCat Attack

16

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

CopyCat Attack

17

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

1

CopyCat Attack

18

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

CopyCat Attack

19

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

CopyCat Attack

20

NOP ADD XOR MUL DIV ADD MUL NOP NOP

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

Time𝑡1 𝑡2

IRQ

Range

0

1

CopyCat Attack

21

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

I got 15 IRQs.

How many

zeros?

CopyCat Attack

22

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

I got 15 IRQs.

How many

zeros?

DTLB

P
R

W

U

S
A …

Physical Page
Number

……

P
R

W

U

S A …
Physical Page

Number
……

P
R

W

U

S
A …

Physical Page
Number

……

0x000401

Code Page Virtual Address

PMH
Page

Walk

The A Bit is

only set when

an instruction

is retired

CopyCat Attack

23

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

CopyCat Attack

24

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target
Code

Page

CopyCat Attack

25

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target
Code

Page

Stack
Page

4 Steps

CopyCat Attack

26

• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful.
• A Secondary oracle

• Page table attack as a deterministic secondary oracle

CALL ADD XOR MUL PUSH ADD MUL MOV NOP

Time

Target
Code

Page

Stack
Page

Data
Page

4 Steps 3 Steps

CopyCat Attack

27

Page A

Page B

Page C

Page D

Traditional

Page-table

Attacks

• Previous Controlled Channel attacks leak Page Access Patterns

CopyCat Attack

28

Page A

Page B

Page C

Page D

Traditional

Page-table

Attacks

Page A

Page B

Page C

Page D

CopyCat

Attack

Additional Data

4

8

6

4

• Previous Controlled Channel attacks leak Page Access Patterns

• CopyCat additionally leaks number of instructions per page

CopyCat – Leaking Branches

29

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

CopyCat – Leaking Branches

30

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

CopyCat – Leaking Branches

31

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

CopyCat – Leaking Branches

32

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

CopyCat – Leaking Branches

33

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

Data

Code

Data

Code

Data

Code

CopyCat – Leaking Branches

34

if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

switch (c){
case 0:
r = 0xbeef;
break;

case 1:
r = 0xcafe;
break;

default:
r = 0;

}

C Code

35

Binary Extended Euclidean Algorithm (BEEA)

36

• Previous attacks only leak some of
the branches w/ some noise

Binary Extended Euclidean Algorithm

37

• Previous attacks only leak some of
the branches w/ some noise

• CopyCat synchronously leaks all the
branches wo/ any noise

CopyCat on WolfSSL

• Translate instruction Counts to Basic Block Transitions

38

CopyCat on WolfSSL

• Translate instruction Counts to Basic Block Transitions

39

CopyCat on WolfSSL

• Translate instruction Counts to Basic Block Transitions

40

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

41

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N

42

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N

• Branch and prune Algorithm with the help of the recovered trace

43

p = . . . X

q = . . . X

p = . . . 0

q = . . . 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . . 1

q = . . . 1

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

44

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

45

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . . 0

q = . . . 1

p = . . . 1

q = . . . 0

p = . . X 1

q = . . X 1
N = 1 1 1 0

p = . . 0 0

q = . . 1 0

p = . . 1 0

q = . . 0 0

p = . . 0 0

q = . . 1 0

p = . . 1 1

q = . . 0 1

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

46

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . X 0 0

q = . X 1 0

p = . X 1 1

q = . X 0 1

p = . 0 1 1

q = . 1 0 1

p = . 1 1 1

q = . 0 0 1

p = . 0 0 0

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0

p = . 0 0 0

q = . 1 1 0

p = . 1 0 0

q = . 0 1 0

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

47

N = 1 1 1 0

p = . . . X

q = . . . X

p = . . X 0

q = . . X 0

p = . . X 1

q = . . X 1

p = . X 0 0

q = . X 1 0

p = . X 1 0

q = . X 0 0

p = . 0 1 0

q = . 1 0 0

p = . 1 1 0

q = . 0 0 0

CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥

• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

• Single-trace Attack during RSA Key Generation: 𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁

• Similar attack but instead use 𝜆 𝑁 =
𝑝−1 𝑞−1

2𝑖

• Only 81% of the keys have the above property

• It works even on a hardcoded and big value for 𝑒, i.e. 𝑒 ≠ 65537

48

CopyCat on WolfSSL – Cryptanalysis Results

• Executed each attack 100 times.

• DSA 𝑘−1 𝑚𝑜𝑑 𝑛
• Average 22,000 IRQs

• 75 ms to iterate over an average of 6,320 steps

• RSA 𝑞−1 𝑚𝑜𝑑 𝑝
• Average 106490 IRQs

• 365 ms to iterate over an average of 39,400 steps

• RSA 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• Average 230,050 IRQs

• 800ms to iterate over an average of 81,090 steps

• Experimental traces always match the leakage model in all experiments
→ Successful single-trace key recovery

49

CopyCat – Bypassing ECDSA Timing
Countermeasure

50

How about other Crypto libraries?

• Libgcrypt uses a variant of BEEA
• Single trace attack on DSA, Elgamal, ECDSA, RSA Key generation

• OpenSSL uses BEEA for computing GCD
• Single trace attack on RSA Key generation when computing gcd 𝑞 − 1, 𝑝 − 1

• There is still lots of other cases of micro leakages due to usage of
branches, e.g. Intel IPP Crypto lehmer’s GCD with optimizations

51

Responsible Disclosure

• WolfSSL fixed the issues in 4.3.0 and 4.4.0
• Blinding for 𝑘−1 𝑚𝑜𝑑 𝑛 and 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁

• Alternate formulation for 𝑞−1 𝑚𝑜𝑑 𝑝: 𝑞𝑝−2 𝑚𝑜𝑑 𝑝

• Using a constant-time (branchless) modular inverse [11]

• Libgcrypt fixed the issues in 1.8.6
• Using a constant-time (branchless) modular inverse [11]

• OpenSSL fixed the issue in 1.1.1e
• Using a constant-time (branchless) GCD algorithm [11]

52

[11] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." CHES 2019.

Interrupt Driven Attacks and Single Stepping

• Amplifying Transient Execution Attacks
• Foreshadow, ZombieLoad, LVI, CrossTalk

• Amplifying Microarchitectural Side Channels
• CacheZoom, BranchScope, Branch Shadowing,

Bluethunder, etc.

• Interrupt Latency as a Side Channel
• Nemesis, Frontal Attack

53

Comparison to other Attacks

54

Comparison to other Attacks

• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

55

Comparison to other Attacks

• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

• Some can be mitigated by flushing/isolating microarchitectural buffers.

56

Comparison to other Attacks

• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

• Some can be mitigated by flushing/isolating microarchitectural buffers.

• Some only apply to legacy enclave (32-bit)

57

Comparison to other Attacks

• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

• Some can be mitigated by flushing/isolating microarchitectural buffers.

• Some only apply to legacy enclave (32-bit)

• Some are limited to be applied synchronously.

58

CopyCat and Macro-fusion

• Fused instructions are counted as one.

• Confirm/RE of the behavior of macro-fusion on Intel CPUs

• Macro-fusion is dependent on the program layout → deterministic
• The offset of a cmp+branch within a cache line

• True when hyperthreading is disabled (Intel SGX TCB)

59

https://en.wikichip.org/wiki/macro-operation_fusion

Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

60

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Deterministic

– Ctrl Channel
µarch Side

Channel

This work

Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully Deterministic and reliable
• Millions of instructions tested

• Attacks match the exact leakage model

61

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Deterministic

– Ctrl Channel
µarch Side

Channel

This work

Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully Deterministic and reliable
• Millions of instructions tested

• Attacks match the exact leakage model of branches

• Easy to scale and replicate
• No reverse engineering of branches and

microarchitectural components

• Tracking all the branches synchronously

62

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Deterministic

– Ctrl Channel
µarch Side

Channel

This work

Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully Deterministic and reliable
• Millions of instructions tested

• Attacks match the exact leakage model of branches

• Easy to scale and replicate
• No reverse engineering of branches and

microarchitectural components

• Tracking all the branches synchronously

• Branchless programming is hard!

63

SGX Attacks

Intel’s

Responsibility

Software Dev

Responsibility

Deterministic

– Ctrl Channel
µarch Side

Channel

This work

Future Directions – Other TEE Models

• Virtual Machine TEE
• AMD SEV
• Intel TDX

• What are other ways to interrupt a
TEE in the above models?

• What is the impact?
• Guest OSS

• Cryptographic Services
• Other Applications

• …

64

Future Directions – Non-cryptographic Application of Enclaves

• Data-dependent secret-processing applications
• Confidential Deep Learning (

• Trusted Database (EnclaveDB)

• Automated Leakage Analysis and Exploit Generation
• Fuzzing and Taint Analysis

• Dynamic Analysis

65

Future Directions – Mitigation

• Compiler-based Solutions
• Balancing secret-dependent branches with dummy instructions

• System-level Mitigation
• Self-paging Enclave (Autarky)

66

Questions?!

67

https://github.com/j

ovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

