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Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)
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Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU
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Trusted Execution Environment (TEE) – Intel SGX

• Intel Software Guard eXtensions (SGX)

• Enclave: Hardware protected user-level software module
• Mapped by the Operating System

• Loaded by the user program

• Authenticated and Encrypted by CPU

• Protects against system
level adversary

New Attacker Model:

Attacker gets full control over OS
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Intel SGX Attack Taxonomy
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• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery 
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

SGX Attacks

Intel’s 

Responsibility

Foreshadow [1]

Plundervolt [2]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
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• Intel’s Responsibility
• Microcode Patches / Hardware mitigation

• TCB Recovery 
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic 

SGX Attacks

Intel’s 

Responsibility

Software Dev 

Responsibility

Foreshadow [1]

Plundervolt [2]

µarch Side 

Channel

Cache [3][4][5]

Branch Predictors 

[6][7]

Interrupt Latency [8]

[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.

[3] Moghimi et al. "Cachezoom: How SGX amplifies the power of cache attacks." CHES 2017.

[4] Brasser et al. "Software grand exposure:{SGX} cache attacks are practical." USENIX WOOT 2017.
[5] Schwarz et al. "Malware guard extension: Using SGX to conceal cache attacks." DIMVA 2017.

[6] Evtyushkin, Dmitry, et al. "Branchscope: A new side-channel attack on directional branch predictor." ACM SIGPLAN 2018.
[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.
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• Microcode Patches / Hardware mitigation

• TCB Recovery 
• Old Keys are Revoked

• Remote attestation succeeds only with mitigation.

• Hyperthreading is out
• Remote Attestation Warning

• µarch Side Channel
• Constant-time Coding

• Flushing and Isolating buffers

• Probabilistic 

• Deterministic Attacks
• Page Fault, A/D Bit, etc. (4kB Granularity)

SGX Attacks

Intel’s 
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[1] Van Bulck et al. "Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution." USENIX Security 2018.
[2] Murdock et al. "Plundervolt: Software-based fault injection attacks against Intel SGX." IEEE S&P 2020.
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[7] Lee, Sangho, et al. "Inferring fine-grained control flow inside {SGX} enclaves with branch shadowing." USENIX Security 2017.

[8] Van Bulck et al. "Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic." ACM CCS 2018.

[9] Xu et al. "Controlled-channel attacks: Deterministic side channels for untrusted operating systems." IEEE S&P 2015.
[10] Wang, Wenhao, et al. "Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX." ACM CCS 2017.
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• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after
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• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful. 
• A Secondary oracle  

• Page table attack as a deterministic secondary oracle
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• Malicious OS controls the interrupt handler

• A threshold to execute 1 or 0 instructions

• Filtering Zeros out: Clear the A bit before, Check the A bit after

• Deterministic Instruction Counting

• Counting from start to end is not useful. 
• A Secondary oracle  

• Page table attack as a deterministic secondary oracle

CALL           ADD                  XOR                   MUL                            PUSH                       ADD      MUL                         MOV           NOP

Time

Target 
Code 

Page

Stack 
Page

Data 
Page

4 Steps 3 Steps
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27

Page A

Page B

Page C

Page D

Traditional 

Page-table 

Attacks

• Previous Controlled Channel attacks leak Page Access Patterns



CopyCat Attack
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• Previous Controlled Channel attacks leak Page Access Patterns

• CopyCat additionally leaks number of instructions per page
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if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2
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CopyCat – Leaking Branches
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if(c == 0) {
r = add(r, d);

}
else {
r = add(r, s);

}

C Code

test %eax, %eax
je label
mov %edx, %esi
label:
call add
mov %eax, -0xc(%rbp)

Compile

Stack S

Code P1

Code P2

Stack S

Code P1

Code P2

switch (c){
case 0:
r = 0xbeef;
break;

case 1:
r = 0xcafe;
break;

default:
r = 0;

}

C Code
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Binary Extended Euclidean Algorithm (BEEA)
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• Previous attacks only leak some of 
the branches w/ some noise



Binary Extended Euclidean Algorithm
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• Previous attacks only leak some of 
the branches w/ some noise

• CopyCat synchronously leaks all the 
branches wo/ any noise



CopyCat on WolfSSL

• Translate instruction Counts to Basic Block Transitions
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CopyCat on WolfSSL

• Translate instruction Counts to Basic Block Transitions
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CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1

−1 ℎ − 𝑟1. 𝑥 𝑚𝑜𝑑 𝑛 → get private key 𝑥
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CopyCat on WolfSSL - Cryptanalysis

• Single-trace Attack during DSA signing: 𝑘𝑖𝑛𝑣 = 𝑘−1 𝑚𝑜𝑑 𝑛
• Iterative over the entire recovered trace with 𝑛 as input → 𝑘𝑖𝑛𝑣
• Plug 𝑘𝑖𝑛𝑣 in 𝑠1 = 𝑘1
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• Single-trace Attack during RSA Key Generation: 𝑞𝑖𝑛𝑣 = 𝑞−1 𝑚𝑜𝑑 𝑝
• We know that p.q = N, and N is public

• Branch and prune Algorithm with the help of the recovered trace

• Single-trace Attack during RSA Key Generation: 𝑑 = 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁

• Similar attack but instead use 𝜆 𝑁 =
𝑝−1 𝑞−1

2𝑖

• Only 81% of the keys have the above property

• It works even on a hardcoded and big value for 𝑒, i.e. 𝑒 ≠ 65537
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CopyCat on WolfSSL – Cryptanalysis Results

• Executed each attack 100 times.

• DSA 𝑘−1 𝑚𝑜𝑑 𝑛
• Average 22,000 IRQs 

• 75 ms to iterate over an average of 6,320 steps

• RSA 𝑞−1 𝑚𝑜𝑑 𝑝
• Average 106490 IRQs 

• 365 ms to iterate over an average of 39,400 steps

• RSA 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁
• Average 230,050 IRQs 

• 800ms to iterate over an average of 81,090 steps

• Experimental traces always match the leakage model in all experiments 
→ Successful single-trace key recovery
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CopyCat – Bypassing ECDSA Timing 
Countermeasure
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How about other Crypto libraries?

• Libgcrypt uses a variant of BEEA
• Single trace attack on DSA, Elgamal, ECDSA, RSA Key generation

• OpenSSL uses BEEA for computing GCD
• Single trace attack on RSA Key generation when computing gcd 𝑞 − 1, 𝑝 − 1

• There is still lots of other cases of micro leakages due to usage of 
branches, e.g. Intel IPP Crypto lehmer’s GCD with optimizations
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Responsible Disclosure

• WolfSSL fixed the issues in 4.3.0 and 4.4.0 
• Blinding for 𝑘−1 𝑚𝑜𝑑 𝑛 and 𝑒−1 𝑚𝑜𝑑 𝜆 𝑁

• Alternate formulation for 𝑞−1 𝑚𝑜𝑑 𝑝: 𝑞𝑝−2 𝑚𝑜𝑑 𝑝

• Using a constant-time (branchless) modular inverse [11]

• Libgcrypt fixed the issues in 1.8.6
• Using a constant-time (branchless) modular inverse [11]

• OpenSSL fixed the issue in 1.1.1e 
• Using a constant-time (branchless) GCD algorithm [11]
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[11] Bernstein, Daniel J., and Bo-Yin Yang. "Fast constant-time gcd computation and modular inversion." CHES 2019.



Interrupt Driven Attacks and Single Stepping

• Amplifying Transient Execution Attacks
• Foreshadow, ZombieLoad, LVI, CrossTalk

• Amplifying Microarchitectural Side Channels
• CacheZoom, BranchScope, Branch Shadowing, 

Bluethunder, etc.

• Interrupt Latency as a Side Channel
• Nemesis, Frontal Attack
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Comparison to other Attacks
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• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)
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Comparison to other Attacks

• Some do not work when hyper-threadnig is disabled (Strong TCB of Intel SGX)

• Some can be mitigated by flushing/isolating microarchitectural buffers.

• Some only apply to legacy enclave (32-bit)

• Some are limited to be applied synchronously.
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CopyCat and Macro-fusion

• Fused instructions are counted as one.

• Confirm/RE of the behavior of macro-fusion on Intel CPUs

• Macro-fusion is dependent on the program layout → deterministic
• The offset of a cmp+branch within a cache line

• True when hyperthreading is disabled (Intel SGX TCB)
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Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches
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Conclusion

• Instruction Level Granularity
• Imbalance number of instructions

• Leak the outcome of branches

• Fully Deterministic and reliable
• Millions of instructions tested

• Attacks match the exact leakage model of branches

• Easy to scale and replicate
• No reverse engineering of branches and 

microarchitectural components

• Tracking all the branches synchronously

• Branchless programming is hard!
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Future Directions – Other TEE Models

• Virtual Machine TEE
• AMD SEV
• Intel TDX

• What are other ways to interrupt a 
TEE in the above models?

• What is the impact? 
• Guest OSS

• Cryptographic Services
• Other Applications

• …
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Future Directions – Non-cryptographic Application of Enclaves

• Data-dependent secret-processing applications
• Confidential Deep Learning (

• Trusted Database (EnclaveDB)

• Automated Leakage Analysis and Exploit Generation
• Fuzzing and Taint Analysis

• Dynamic Analysis
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Future Directions – Mitigation

• Compiler-based Solutions
• Balancing secret-dependent branches with dummy instructions

• System-level Mitigation
• Self-paging Enclave (Autarky)
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Questions?!
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https://github.com/j

ovanbulck/sgx-step

https://github.com/jovanbulck/sgx-step

