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OUTLINE

▪ Summary of Recent Contributions:
▪Microarchiture→ MemJam
▪ Intel SGX → CacheZoom
▪ Intel EPID → CacheQuote
▪ Speculation → Spoiler
▪Mitigation → MicroWalk

▪ Shared FPGA-CPU Hardware Security
▪ Proposal
▪ Lab Equipment/Setup
▪Ongoing Work
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Microarchitecture 
(Memory)
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μArch Attacks: Data Dependency
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μArch Attacks: Pipelined Memory Exec
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μArch Attacks: 4K Aliasing False Dependency

▪ Memory loads/stores are executed out of order and speculatively

▪ The dependency is verified after the execution!

▪ 4K Aliasing: Addresses that are 4K apart are assumed dependent 

▪ Re-execute the load and corresponding instructions due to false dependency

▪ Virtual-to-physical address translation → Memory disambiguation

mov %eax, (%ebx)

mov (%ecx), %edx Load
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Core
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MemJam
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MemJam – Intra Cache Line Resolution
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Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)
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Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/LLC Cache Attacks

▪ Conflicted intra-cache line Leakage (4-byte granularity)

▪ Higher time correlates→Memory accesses with the same bit 3 to 12

▪ 4 bits of intra-cache level leakage

MemJam – Intra Cache Line Resolution



MemJam Attack
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Constant time AES – Safe2Encrypt_RIJ128

▪ Scatter-gather implementation of AES
▪ 256 S-Box – 4 Cache Line
▪ Cache independent access pattern

▪ Implemented and distributed as part of Intel products 
▪ Intel SGX Linux Software Development Kit (SDK)
▪ Intel IPP Cryptography Library
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MemJam Attack on Safe2Encrypt_RIJ128
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MemJam Attack on Safe2Encrypt_RIJ128
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INTEL SOFTWARE GUARD EXTENSION (SGX)

▪ Trusted Execution Environment (TEE)

▪ Enclave: Hardware protected user-level software module
▪ Loaded by the user program
▪ Mapped by the Operating System
▪ Authenticated and Encrypted by CPU

▪ Memory accesses are protected by the hardware
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MemJam Attack on SGX
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CacheZoom: Controlled Cache Attack ON SGX

1. Isolation of the target & victim cache

2. Stabilize the processor frequency

3. Perform the attack on small exec steps by 
interrupting the victim

4. Measure and filter the remaining noise
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L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1:  Attacker prime all the L1D sets

PC

27



L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1:  Attacker prime all the L1D sets

PC

28

Step 2: Victim executes some codes
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Step 2: Victim executes some codes

Step 3:  Attacker interrupts the execution pipeline
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Step 2: Victim executes some codes

Step 3:  Attacker interrupts the execution pipeline

Step 4:  Attacker probes the access times

→Go to step 1
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Step 2: Victim executes some codes

Step 3:  Attacker interrupts the execution pipeline

Step 4:  Attacker probes the access times

→Go to step 1
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Step 2: Victim executes some codes

Step 3:  Attacker interrupts the execution pipeline

Step 4:  Attacker probes the access times

→Go to step 1



CacheZoom: Interrupted Cache Attack
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CacheQuote Attack

▪ Quoting Enclave:
▪ EPID Signature scheme built-in enclave by Intel
▪ Attest the integrity of user-provided enclave

▪ EPID Implementation (is)was not constant-time
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CacheQuote Attack

▪ Loop iteration leaks Leading Zero Bits

▪ CacheZoom to accurately measure

▪ Feed the short vectors to a lattice and 
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Memory 
Speculation



Speculative Memory Accesses
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Spoiler on Spoiler Attack
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MicroWalk: Finding μArch Sources in Binaries 
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▪ Detecting Leakages based on Binary Instrumentation 
and Mutual Information Analysis
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Accelerators in 
the Cloud



Side-channel Threats Shared FPGA-CPU Platforms

▪ FPGAs on the cloud can boost applications 
▪ Optimized Application-specific Hardware Configuration
▪ e.g Real-time Artificial Intelligence

▪ New Attack Surface:
▪ Accelerator Function Units (AFUs) placed on the FPGA can be used to interact with the CPU 

or other AFUs for malicious purpose.
▪ AFU to AFU Attack
▪ AFU to HPS Attack
▪ AFU to CPU Attack
▪ CPU to AFU Attack
▪ Across VMS ? 
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Shared FPGA-CPU Platforms

44



Attack Vectors

▪ Rowhammer

▪ Trojan Bitstreams
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▪ Cache Attacks

▪ Cold Boot

▪ DMA/IOMMU

▪ FPGA-centric Attacks



What is interesting about FPGA-CPU in the Cloud?

▪ Infancy, Attack/Defense Playground (Intel SGX in 2015)

▪ Customizable Hardware → More Devastating Attacks
▪ E.g. Design your own timers, Direct access to memory interface, etc. 

▪ Complex Threat Model
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Lab/Collaboration Setup

▪ Weekly Meeting ( 2 Faculty + 3 Students = 5 people are actively involved.)

▪ Software
▪ OPAE Stack 
▪ Intel Quartus (Synthesis)
▪ KVM (Virtualization Scenario)

▪ Hardware
▪ Remote Access to Intel Labs (Xeon)
▪ Local Server including Intel PAC 
▪ Heavy Load Workstation (Synthesis)

47



Ongoing Work: 
Threat Modeling and Security Analysis

▪ Threat Modeling of the Technology based on Modern Use Cases

▪ Security Analysis of the Entire Stack Based on Available Resources
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WPI + Lubeck Team
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Ongoing Work: 
Replicating μArch Attacks on FPGA-CPU Interface

▪ Memory Interface and the Cache Coherency Protocol

▪ Side-channel Analysis of Memory Operations 
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