
Microarchitectural Attacks:
Protecting Cloud Accelerators

By

Ahmad “Daniel” Moghimi

PhD Candidate

Worcester Polytechnic Institute (WPI)

@danielmgmi

OUTLINE

▪ Summary of Recent Contributions:
▪Microarchiture→ MemJam
▪ Intel SGX → CacheZoom
▪ Intel EPID → CacheQuote
▪ Speculation → Spoiler
▪Mitigation → MicroWalk

▪ Shared FPGA-CPU Hardware Security
▪ Proposal
▪ Lab Equipment/Setup
▪Ongoing Work

2

Microarchitecture
(Memory)

3

μArch Attacks: Data Dependency

add %ebx, %eax

sub %eax, %edx

xor %ecx, %ecx

add %eax, %edi

sub %ecx, %edi

1

2

3

4

5

4

μArch Attacks: Pipelined Memory Exec

add %ebx, %eax

sub %eax, %edx

xor %ecx, %ecx

add %eax, %edi

sub %ecx, %edi

1

2

3

4

5

IF

ID

EX

WB

Instruction Fetch

Instruction Decode

Execute

Write Back

IF

IF

ID

5

add %ebx, %eax

sub %eax, %edx

xor %ecx, %ecx

add %eax, %edi

sub %ecx, %edi

1

2

3

4

5

IF

ID

EX

WB

Instruction Fetch

Instruction Decode

Execute

Write Back

IF

IF

ID EX

ID

IF

6

μArch Attacks: Pipelined Memory Exec

add %ebx, %eax

sub %eax, %edx

xor %ecx, %ecx

add %eax, %edi

sub %ecx, %edi

1

2

3

4

5

IF

ID

EX

WB

Instruction Fetch

Instruction Decode

Execute

Write Back

IF

IF

ID EX

ID

IF

WB

EX

ID

IF

μArch Attacks: Pipelined Memory Exec

7

add %ebx, %eax

sub %eax, %edx

xor %ecx, %ecx

add %eax, %edi

sub %ecx, %edi

1

2

3

4

5

IF

ID

EX

WB

Instruction Fetch

Instruction Decode

Execute

Write Back

IF

IF

ID EX

ID

IF

WB

EX

ID

IF

EX

EX

ID

IF

WB

ID

WB

EX

EX

WB

WB

8

μArch Attacks: Pipelined Memory Exec

μArch Attacks: 4K Aliasing False Dependency

▪ Memory loads/stores are executed out of order and speculatively

▪ The dependency is verified after the execution!

▪ 4K Aliasing: Addresses that are 4K apart are assumed dependent

▪ Re-execute the load and corresponding instructions due to false dependency

▪ Virtual-to-physical address translation → Memory disambiguation

mov %eax, (%ebx)

mov (%ecx), %edx Load

Store Execute

Load

Execute

Store

Dependent?
Yes

9

Core

HT – Thread A HT – Thread B

Load 0xFECD1

Load 0xFECD2

Load 0xFECD3

Load 0xFECD4

Load 0xFECD5

Load 0xFECD6

Load 0xFECD7

Load 0xFECD8

E
x
e

c
u
te

 &
 T

im
e

10

μArch Attacks – Hyperthreading 4K Aliasing

Core

HT – Thread A HT – Thread B

Load 0xFECD1

Load 0xFECD2

Load 0xFECD3

Load 0xFECD4

Load 0xFECD5

Load 0xFECD6

Load 0xFECD7

Load 0xFECD8

E
x
e

c
u
te

 &
 T

im
e

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

Store 0x12ABCDEF

11

μArch Attacks – Hyperthreading 4K Aliasing

Core

HT – Thread A HT – Thread B

Load 0xFECD1

Load 0xFECD2

Load 0xFECD3

Load 0xFECD4

Load 0xFECD5

Load 0xFECD6

Load 0xFECD7

Load 0xFECD8

E
x
e

c
u
te

 &
 T

im
e

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

Store 0x12ABC200

12

μArch Attacks – Hyperthreading 4K Aliasing

Core

HT – Thread A HT – Thread B

Load 0xFECD1

Load 0xFECD2

Load 0xFECD3

Load 0xFECD4

Load 0xFECD5

Load 0xFECD6

Load 0xFECD7

Load 0xFECD8

E
x
e

c
u
te

 &
 T

im
e

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

Store 0x12ABC

13

μArch Attacks – Hyperthreading 4K Aliasing

MemJam

14

MemJam – Intra Cache Line Resolution

15

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

16

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

MemJam – Intra Cache Line Resolution

17

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/LLC Cache Attacks

MemJam – Intra Cache Line Resolution

18

Least 12 bits (Virtual Address = Physical Address)Rest of the bits (Virtual != Physical)

L1 Cache Attacks

L2/LLC Cache Attacks

▪ Conflicted intra-cache line Leakage (4-byte granularity)

▪ Higher time correlates→Memory accesses with the same bit 3 to 12

▪ 4 bits of intra-cache level leakage

MemJam – Intra Cache Line Resolution

MemJam Attack
CPU

Core

HT HT

Core

HT HT

Encryption

Service

load
compute
load
load
compute
load
compute
load
load

Execute

E
x
e

c
u
te

 A
g

a
in

Higher time if there

are more number of
4K conflicts

19

Constant time AES – Safe2Encrypt_RIJ128

▪ Scatter-gather implementation of AES
▪ 256 S-Box – 4 Cache Line
▪ Cache independent access pattern

▪ Implemented and distributed as part of Intel products
▪ Intel SGX Linux Software Development Kit (SDK)
▪ Intel IPP Cryptography Library

20

LINE 2A

LINE 2B

LINE 2C

LINE 2D

64 Bytes

4
 C

a
c
h
e

 L
in

e
s

S-Box Lookup A B C

Local Buffer

D B

MemJam Attack on Safe2Encrypt_RIJ128

21

LINE 2

64 Bytes

4
 C

a
c
h
e

 L
in

e
s

Local Buffer

MemJam Attack on Safe2Encrypt_RIJ128

22

LINE 2

64 Bytes

4
 C

a
c
h
e

 L
in

e
s

Local Buffer

23

Intel SGX

INTEL SOFTWARE GUARD EXTENSION (SGX)

▪ Trusted Execution Environment (TEE)

▪ Enclave: Hardware protected user-level software module
▪ Loaded by the user program
▪ Mapped by the Operating System
▪ Authenticated and Encrypted by CPU

▪ Memory accesses are protected by the hardware

24

MemJam Attack on SGX

25

CacheZoom: Controlled Cache Attack ON SGX

1. Isolation of the target & victim cache

2. Stabilize the processor frequency

3. Perform the attack on small exec steps by
interrupting the victim

4. Measure and filter the remaining noise

26

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets

PC

27

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets

PC

28

Step 2: Victim executes some codes

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets

PC

29

Step 2: Victim executes some codes

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets

PC

30

Step 2: Victim executes some codes

Step 3: Attacker interrupts the execution pipeline

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets

PC

31

Step 2: Victim executes some codes

Step 3: Attacker interrupts the execution pipeline

Step 4: Attacker probes the access times

→Go to step 1

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets
PC

32

Step 2: Victim executes some codes

Step 3: Attacker interrupts the execution pipeline

Step 4: Attacker probes the access times

→Go to step 1

L1D Cache

CacheZoom: Interrupted Cache Attack

0
1
2
3
4
5
6
7
8

57
58
59
60
61
62
63

…

56

Step 1: Attacker prime all the L1D sets
PC

33

Step 2: Victim executes some codes

Step 3: Attacker interrupts the execution pipeline

Step 4: Attacker probes the access times

→Go to step 1

CacheZoom: Interrupted Cache Attack

34

35

CacheQuote

CacheQuote Attack

▪ Quoting Enclave:
▪ EPID Signature scheme built-in enclave by Intel
▪ Attest the integrity of user-provided enclave

▪ EPID Implementation (is)was not constant-time

36

CacheQuote Attack

▪ Loop iteration leaks Leading Zero Bits

▪ CacheZoom to accurately measure

▪ Feed the short vectors to a lattice and

37

38

Memory
Speculation

Speculative Memory Accesses

39

Spoiler on Spoiler Attack

40

MicroWalk: Finding μArch Sources in Binaries

41

▪ Detecting Leakages based on Binary Instrumentation
and Mutual Information Analysis

42

Accelerators in
the Cloud

Side-channel Threats Shared FPGA-CPU Platforms

▪ FPGAs on the cloud can boost applications
▪ Optimized Application-specific Hardware Configuration
▪ e.g Real-time Artificial Intelligence

▪ New Attack Surface:
▪ Accelerator Function Units (AFUs) placed on the FPGA can be used to interact with the CPU

or other AFUs for malicious purpose.
▪ AFU to AFU Attack
▪ AFU to HPS Attack
▪ AFU to CPU Attack
▪ CPU to AFU Attack
▪ Across VMS ?

43

Shared FPGA-CPU Platforms

44

Attack Vectors

▪ Rowhammer

▪ Trojan Bitstreams

45

▪ Cache Attacks

▪ Cold Boot

▪ DMA/IOMMU

▪ FPGA-centric Attacks

What is interesting about FPGA-CPU in the Cloud?

▪ Infancy, Attack/Defense Playground (Intel SGX in 2015)

▪ Customizable Hardware → More Devastating Attacks
▪ E.g. Design your own timers, Direct access to memory interface, etc.

▪ Complex Threat Model

46

Lab/Collaboration Setup

▪ Weekly Meeting (2 Faculty + 3 Students = 5 people are actively involved.)

▪ Software
▪ OPAE Stack
▪ Intel Quartus (Synthesis)
▪ KVM (Virtualization Scenario)

▪ Hardware
▪ Remote Access to Intel Labs (Xeon)
▪ Local Server including Intel PAC
▪ Heavy Load Workstation (Synthesis)

47

Ongoing Work:
Threat Modeling and Security Analysis

▪ Threat Modeling of the Technology based on Modern Use Cases

▪ Security Analysis of the Entire Stack Based on Available Resources

48

WPI + Lubeck Team

49

Acknowledgements

50

▪ Thanks to Carlos Rosaz, Matthias Schunter, Anand
Rajan, Evan Custodio from Intel

THANKS
▪ Questions?

51

Ongoing Work:
Replicating μArch Attacks on FPGA-CPU Interface

▪ Memory Interface and the Cache Coherency Protocol

▪ Side-channel Analysis of Memory Operations

52

