

By

Daniel Moghimi

PhD Candidate

Worcester Polytechnic Institute (WPI)

@danielmgmi

Outline

- Data Dependency
- SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks
- Intel SCAP: Protecting Accelerators in the Cloud

Data Dependency

- EX Execute
- WB Write Back

4K Aliasing False Dependency

- Memory loads/stores are executed out of order and speculatively
- The dependency is verified after the execution!

- 4K Aliasing: Addresses that are 4K apart are assumed dependent
- Re-execute the **load** and corresponding instructions due to false dependency
- Virtual-to-physical address translation \rightarrow Memory disambiguation

SPOILER

1 MB Aliasing False Dependency

1 MB Aliasing False Dependency

1 MB Aliasing False Dependency

Cross-Context Address Leakage?

Rowhammer – Bank Colocation

• DRAM Banks are mapped based on the physical address

System Model	DRAM Configuration	# of Bits
Dell XPS-L702x	1 x (4GB 2Rx8)	21
(Sandy Bridge)	2 x (4GB 2Rx8)	22
Dell Inspiron-580	1 x (2GB 2Rx8) (b)	21
(Nehalem)	2 x (2GB 2Rx8) (c)	22
	4 x (2GB 2Rx8) (d)	23
Dell Optiplex-7010	1 x (2GB 1Rx8) (a)	19
(Ivy Bridge)	2 x (2GB 1Rx8)	20
	1 x (4GB 2Rx8) (e)	21
	2 x (4GB 2Rx8)	22

Rowhammer – Detecting Contiguous Memory

• Memory is contiguous when the peaks 256 apart

Cache Attacks

- Cache sets are mapped based on the physical address.
- <u>https://github.com/UzL-ITS/Spoiler</u>

- Optimized Applicationspecific Hardware Configuration
- e.g. Real-time Artificial Intelligence

Side channels on Heterogeneous Accelerators

• New Attack Surface:

- Accelerator Function Units (AFUs) placed on the FPGA can be used to interact with the CPU or other AFUs for malicious purpose.
 - AFU to AFU Attack
 - AFU to HPS Attack
 - AFU to CPU Attack
 - CPU to AFU Attack
 - Across VMS ?
- Customizable Hardware \rightarrow More Devastating Attacks
 - E.g. Design your own timers, Direct access to memory interface, etc.
- Complex Threat Model

Integrated FPGA-CPU Platforms

Attack Vectors

Rowhammer

Trojan Bitstreams

Cache Attacks

Cold Boot

• DMA/IOMMU

• FPGA-centric Attacks

Replicating μ Arch Attacks on FPGA-CPU Interface

- Memory Interface and the Cache Coherency Protocol
- Side-channel Analysis of Memory Operations

Lab/Collaboration Setup

- Weekly Meeting (2 Faculty + 3 Students = 5 people are actively involved.)
- Software
 - OPAE Stack
 - Intel Quartus (Synthesis)
 - KVM (Virtualization Scenario)
- Hardware
 - Remote Access to Intel Labs (Xeon)
 - Local Server including Intel PAC
 - Heavy Load Workstation (Synthesis)

Cache Attack and FPGAs

23

Cache Attack and FPGAs

WPI + Lubeck Team

Other Works

- Transient Execution Attacks
 - Schwarz et al. "ZombieLoad: Cross-Privilege-Boundary Data Sampling"
 - Minkin et al. "Fallout: Reading Kernel Writes From User Space"
- Microarchitectural Side Channels
 - Islam et al. "SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks"
 - Moghimi et al. "MemJam: A False Dependency Attack against Constant-Time Crypto Implementations"
- Intel SGX / TEE
 - Moghimi et al. "CacheZoom: How SGX Amplifies The Power of Cache Attacks"
- Cryptographic Implementations
 - Wichelmann et al. "MicroWalk: A Framework for Finding Side Channels in Binaries"
 - Dall et al. "CacheQuote: Efficiently Recovering Long-term Secrets of SGX EPID via Cache Attacks"
 - Are remote timing attack being still a thing in 2019 !??!

Acknowledgements

 Thanks to Carlos Rosaz, Matthias Schunter, Anand Rajan, Evan Custodio and Alpa Trivedi from Intel

THANKS

• Questions?

@danielmgmi

